Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RISK ; VARIANTS ; METAANALYSIS ; ALLELES ; LOCI ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; IDENTIFIES 2 ; 5P12
    Abstract: Candidate variant association studies have been largely unsuccessful in identifying common breast cancer susceptibility variants, although most studies have been underpowered to detect associations of a realistic magnitude. We assessed 41 common non-synonymous single nucleotide polymorphisms (nsSNPs) for which evidence of association with breast cancer risk had been previously reported. Case-control data were combined from 38 studies of white European women (46,450 cases and 42,600 controls) and analysed using unconditional logistic regression. Strong evidence of association was observed for three nsSNPs: ATXN7-K264R at 3p21 (rs1053338, per-allele OR=1.07, 95%CI=1.04-1.10, P=2.9x10-6), AKAP9-M463I at 7q21 (rs6964587, OR=1.05, 95%CI=1.03-1.07, P=1.7x10-6) and NEK10-L513S at 3p24 (rs10510592, OR=1.10, 95%CI=1.07-1.12, P=5.1x10-17). The first two associations reached genome-wide statistical significance in a combined analysis of available data, including independent data from nine GWAS: for ATXN7-K264R, OR=1.07 (95%CI=1.05-1.10, P=1.0x10-8); for AKAP9-M463I, OR=1.05 (95%CI=1.04-1.07, P=2.0x10-10). Further analysis of other common variants in these two regions suggested that intronic SNPs nearby are more strongly associated with disease risk. We have thus identified a novel susceptibility locus at 3p21, and confirmed previous suggestive evidence that rs6964587 at 7q21 is associated with risk. The third locus, rs10510592, is located in an established breast cancer susceptibility region; the association was substantially attenuated after adjustment for the known genome-wide association study (GWAS) hit. Thus, each of the associated nsSNPs is likely to be a marker for another, non-coding, variant causally related to breast cancer risk. Further fine-mapping and functional studies are required to identify the underlying risk-modifying variants and the genes through which they act.
    Type of Publication: Journal article published
    PubMed ID: 24943594
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: carcinoma ; POPULATION ; GENE-EXPRESSION ; MARKER ; OVARIAN-CANCER ; PROSTATE-CANCER ; METAANALYSIS ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; PLATFORM
    Abstract: Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 x 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
    Type of Publication: Journal article published
    PubMed ID: 25378557
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RISK ; BRCA1 ; OVARIAN-CANCER ; METAANALYSIS ; ESTROGEN ; ALLELES ; CHEK2-ASTERISK-1100DELC ; CONFER SUSCEPTIBILITY ; COMMON VARIANTS ; GENOTYPE IMPUTATION
    Abstract: Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining approximately 14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P 〈 5 x 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.
    Type of Publication: Journal article published
    PubMed ID: 25751625
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: GENE-EXPRESSION ; VARIANTS ; BREAST-CANCER ; METAANALYSIS ; PREDISPOSITION ; ANDROGEN RECEPTOR ; transcriptome ; GENOME-WIDE ASSOCIATION ; HNF1B GENE ; NGEP
    Abstract: Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain similar to 38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
    Type of Publication: Journal article published
    PubMed ID: 26025378
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: DISEASE ; RISK-FACTORS ; OBESITY ; METAANALYSIS ; BODY-MASS INDEX ; GROWTH-FACTORS ; GENETIC-VARIANTS ; LEG LENGTH ; INSTRUMENTAL VARIABLES ; CONTROL-STUDY PROTECT
    Abstract: Background Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. Methods We conducted a case-control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man's number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. Results The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade 〈 0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). Conclusions We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.
    Type of Publication: Journal article published
    PubMed ID: 26387087
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: RISK ; chemotherapy ; MUTATION CARRIERS ; METAANALYSIS ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; CANCER SUSCEPTIBILITY LOCI ; COMMON VARIANTS ; 14Q24.1 RAD51L1 ; IDENTIFIES 3
    Abstract: Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95% CI) for ILC = 1.13 (1.09-1.18), P = 6.0x10(-10); P-het for ILC vs IDC ER+ tumors = 1.8x10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P〈0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes.
    Type of Publication: Journal article published
    PubMed ID: 24743323
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: carcinoma ; SUSCEPTIBILITY LOCUS ; MUTATIONS ; DNA-DAMAGE ; POPULATIONS ; adenocarcinoma ; METAANALYSIS ; GENOME-WIDE ASSOCIATION ; COMMON GENETIC-VARIATION ; POLYMORPHIC STOP CODON
    Abstract: We conducted imputation to the 1000 Genomes Project of four genome-wide association studies of lung cancer in populations of European ancestry (11,348 cases and 15,861 controls) and genotyped an additional 10,246 cases and 38,295 controls for follow-up. We identified large-effect genome-wide associations for squamous lung cancer with the rare variants BRCA2 p.Lys3326X (rs11571833, odds ratio (OR) = 2.47, P = 4.74 x 10(-20)) and CHEK2 p.Ile157Thr (rs17879961, OR = 0.38, P = 1.27 x 10(-13)). We also showed an association between common variation at 3q28 (TP63, rs13314271, OR = 1.13, P = 7.22 x 10(-10)) and lung adenocarcinoma that had been previously reported only in Asians. These findings provide further evidence for inherited genetic susceptibility to lung cancer and its biological basis. Additionally, our analysis demonstrates that imputation can identify rare disease-causing variants with substantive effects on cancer risk from preexisting genome-wide association study data.
    Type of Publication: Journal article published
    PubMed ID: 24880342
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: RECEPTOR ; carcinoma ; RISK ; PROTEIN ; SUSCEPTIBILITY LOCUS ; VARIANTS ; METAANALYSIS ; 5P15.33 ; CEP57
    Abstract: Lung cancer is the leading cause of cancer death worldwide. Although several genetic variants associated with lung cancer have been identified in the past, stringent selection criteria of genome-wide association studies (GWAS) can lead to missed variants. The objective of this study was to uncover missed variants by using the known association between lung cancer and first-degree family history of lung cancer to enrich the variant prioritization for lung cancer susceptibility regions. In this two-stage GWAS study, we first selected a list of variants associated with both lung cancer and family history of lung cancer in four GWAS (3,953 cases, 4,730 controls), then replicated our findings for 30 variants in a meta-analysis of four additional studies (7,510 cases, 7,476 controls). The top ranked genetic variant rs12415204 in chr10q23.33 encoding FFAR4 in the Discovery set was validated in the Replication set with an overall OR of 1.09 (95% CI = 1.04, 1.14, P = 1.63 x 10(-4) ). When combining the two stages of the study, the strongest association was found in rs1158970 at Ch4p15.2 encoding KCNIP4 with an OR of 0.89 (95% CI = 0.85, 0.94, P = 9.64 x 10(-6) ). We performed a stratified analysis of rs12415204 and rs1158970 across all eight studies by age, gender, smoking status, and histology, and found consistent results across strata. Four of the 30 replicated variants act as expression quantitative trait loci (eQTL) sites in 1,111 nontumor lung tissues and meet the genome-wide 10% FDR threshold.
    Type of Publication: Journal article published
    PubMed ID: 25644374
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; POLYMORPHISMS ; BRCA1 ; GLUCOSE ; MUTATION CARRIERS ; METAANALYSIS ; ALLELES ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; 6Q25.1
    Abstract: A genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) at 1p11.2 and 14q24.1 (RAD51L1) as breast cancer susceptibility loci. The initial GWAS suggested stronger effects for both loci for estrogen receptor (ER) positive tumors. Using data from the Breast Cancer Association Consortium(BCAC) we sought to determine if risks differ by ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), grade, node status, tumor size, and ductal or lobular morphology. We genotyped rs11249433 at 1p.11.2, and two highly correlated SNPs rs999737 and rs10483813 (r(2)=0.98) at 14q24.1 (RAD51L1), for up to 46,036 invasive breast cancer cases and 46,930 controls from 39 studies. Analyses by tumor characteristics focused on subjects reporting to be white women of European ancestry and were based on 25,458 cases, of which 87% had ER data. The SNP at 1p11.2 showed significantly stronger associations with ER-positive tumors [per allele- odds ratio (OR) for ER-positive tumors was 1.13, 95%CI=1.10 to 1.16, and for ER-negative tumors OR was 1.03, 95%CI=0.98 to 1.07, case only P-heterogeneity = 7.6x10(-5)]. The association with ER-positive tumors was stronger for tumors of lower grade (case-only P=6.7 x10(-3)) and lobular histology (case-only P =0.01). SNPs at 14q24.1 were associated with risk for most tumor subtypes evaluated including triple-negative breast cancers, which has not been described previously. Our results underscore the need for large pooling efforts with tumor pathology data to help refine risk estimates for SNP associations with susceptibility to different subtypes of breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 21852249
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...