Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-07
    Description: Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correia, Bruno E -- Bates, John T -- Loomis, Rebecca J -- Baneyx, Gretchen -- Carrico, Chris -- Jardine, Joseph G -- Rupert, Peter -- Correnti, Colin -- Kalyuzhniy, Oleksandr -- Vittal, Vinayak -- Connell, Mary J -- Stevens, Eric -- Schroeter, Alexandria -- Chen, Man -- Macpherson, Skye -- Serra, Andreia M -- Adachi, Yumiko -- Holmes, Margaret A -- Li, Yuxing -- Klevit, Rachel E -- Graham, Barney S -- Wyatt, Richard T -- Baker, David -- Strong, Roland K -- Crowe, James E Jr -- Johnson, Philip R -- Schief, William R -- 1R01AI102766-01A1/AI/NIAID NIH HHS/ -- 1UM1AI100663/AI/NIAID NIH HHS/ -- 2T32GM007270/GM/NIGMS NIH HHS/ -- 5R21AI088554/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI094419/AI/NIAID NIH HHS/ -- P30 AI036214/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- P30AI36214/AI/NIAID NIH HHS/ -- R01 AI102766/AI/NIAID NIH HHS/ -- R21 AI088554/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- U54 AI 005714/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):201-6. doi: 10.1038/nature12966. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] PhD Program in Computational Biology, Instituto Gulbenkian Ciencia and Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal [3] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA [2]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA [3] Department of Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Neutralizing/analysis/immunology ; Antibodies, Viral/analysis/immunology ; Antigens, Viral/chemistry/immunology ; Crystallography, X-Ray ; *Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; Macaca mulatta/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Neutralization Tests ; Protein Conformation ; *Protein Stability ; Respiratory Syncytial Virus Vaccines/*chemistry/*immunology ; Respiratory Syncytial Viruses/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-02
    Description: Respiratory syncytial virus (RSV) is the leading cause of hospitalization for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site O, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site O when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site O-stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Joyce, M Gordon -- Sastry, Mallika -- Stewart-Jones, Guillaume B E -- Yang, Yongping -- Zhang, Baoshan -- Chen, Lei -- Srivatsan, Sanjay -- Zheng, Anqi -- Zhou, Tongqing -- Graepel, Kevin W -- Kumar, Azad -- Moin, Syed -- Boyington, Jeffrey C -- Chuang, Gwo-Yu -- Soto, Cinque -- Baxa, Ulrich -- Bakker, Arjen Q -- Spits, Hergen -- Beaumont, Tim -- Zheng, Zizheng -- Xia, Ningshao -- Ko, Sung-Youl -- Todd, John-Paul -- Rao, Srinivas -- Graham, Barney S -- Kwong, Peter D -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):592-8. doi: 10.1126/science.1243283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology ; Antigens, Viral/*chemistry/genetics/immunology ; Crystallography, X-Ray ; Cysteine/chemistry/genetics ; Glycoproteins/*chemistry/genetics/immunology ; Humans ; Macaca ; Mice ; Protein Engineering ; Protein Multimerization ; Protein Stability ; Protein Structure, Tertiary ; Respiratory Syncytial Virus Infections/*prevention & control ; Respiratory Syncytial Virus Vaccines/*chemistry ; Vaccination ; Viral Fusion Proteins/*chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-27
    Description: The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site O. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459498/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Chen, Man -- Leung, Sherman -- Graepel, Kevin W -- Du, Xiulian -- Yang, Yongping -- Zhou, Tongqing -- Baxa, Ulrich -- Yasuda, Etsuko -- Beaumont, Tim -- Kumar, Azad -- Modjarrad, Kayvon -- Zheng, Zizheng -- Zhao, Min -- Xia, Ningshao -- Kwong, Peter D -- Graham, Barney S -- ZIA AI005024-11/Intramural NIH HHS/ -- ZIA AI005061-10/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1113-7. doi: 10.1126/science.1234914. Epub 2013 Apr 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. mclellanja@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23618766" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal, Humanized/immunology ; Antibodies, Neutralizing/chemistry/*immunology ; Crystallography, X-Ray ; Female ; Glycoproteins/chemistry/*immunology ; HEK293 Cells ; Humans ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Neutralization Tests ; Palivizumab ; Protein Conformation ; Protein Multimerization ; Respiratory Syncytial Virus Vaccines/chemistry/*immunology ; Respiratory Syncytial Viruses/*immunology/physiology ; Viral Fusion Proteins/chemistry/*immunology ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-12
    Description: An extensive literature shows that astrocytes exhibit metabotropic glutamate receptor 5 (mGluR5)-dependent increases in cytosolic calcium ions (Ca(2+)) in response to glutamatergic transmission and, in turn, modulate neuronal activity by their Ca(2+)-dependent release of gliotransmitters. These findings, based on studies of young rodents, have led to the concept of the tripartite synapse, in which astrocytes actively participate in neurotransmission. Using genomic analysis, immunoelectron microscopy, and two-photon microscopy of astrocytic Ca(2+) signaling in vivo, we found that astrocytic expression of mGluR5 is developmentally regulated and is undetectable after postnatal week 3. In contrast, mGluR3, whose activation inhibits adenylate cyclase but not calcium signaling, was expressed in astrocytes at all developmental stages. Neuroglial signaling in the adult brain may therefore occur in a manner fundamentally distinct from that exhibited during development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569008/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Wei -- McConnell, Evan -- Pare, Jean-Francois -- Xu, Qiwu -- Chen, Michael -- Peng, Weiguo -- Lovatt, Ditte -- Han, Xiaoning -- Smith, Yoland -- Nedergaard, Maiken -- NS075177/NS/NINDS NIH HHS/ -- NS078304/NS/NINDS NIH HHS/ -- P51OD011132/OD/NIH HHS/ -- P51RR000165/RR/NCRR NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):197-200. doi: 10.1126/science.1226740.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307741" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; *Aging ; Animals ; Astrocytes/*metabolism ; Calcium/metabolism ; *Calcium Signaling ; Cerebral Cortex/cytology/*metabolism/ultrastructure ; Female ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism/ultrastructure ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/agonists/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...