Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Decomposition ; Immobilization ; Mineralization ; Bamboo savanna ; Litter types ; Lignin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Decomposition and changes in nutrient content of six litter types (leaves, sheaths, roots, twigs, and wood of bamboo, and grass shoots) were studied in nylon net bags for 2 years. The annual weight loss was (% of initial) bamboo leaves 56.5, bamboo sheaths 79.5, bamboo roots 65.8, bamboo twigs 49.6, bamboo wood 31.2, and grass shoots 74.9. Elemental mobility followed the order K〉Na〉C〉P〉Ca〉N in all components except wood. Generally, an initial increase was followed by a consistent decrease in the contents of N (leaves), P (leaves, roots, wood) and Ca (leaves, roots, grass), and Na (wood). Most of the nutrients were immobilized in the rainy season. C and K contents showed a constant decrease throughout the decomposition period. Materials with a greater C:N ratio (〉50) tended to accumulate more nutrients and retain them for longer, except for the bamboo twigs. The critical C:N ratio (at which a net release of N occured) for the leaf material was 25. Litter components with more initial N (sheaths) showed greater weight loss than those with less N (leaves, twigs, and wood). Overall, N and P were lost at the slowest rates while C and K were lost at faster rates. Initial lignin, lignin: N, C:N and C concentrations had a better predictive value for annual weight loss and nutrient release in bivariate relationships. A combination of the initial lignin value and the C: N ratio explained 93% of the variation in annual weight loss. A significant relationship was also observed between the annual weight loss rate and the nutrient mineralization/release rate.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Perionyx excavatus ; Earthworms ; Feeding activity ; Plant residues ; Mineralization ; Maturity parameters ; Vermicomposting ; C/N ratio ; Straw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An outdoor study was undertaken using polyethylene containers to assess the suitability of different organic residues, soybean straw (Glycine max L. Merril.), wheat straw (Triticum aestivum L.), maize stover (Zea mays L.), chickpea straw (citer arietinum L.) and city garbage, as food for the tropical epigeic earthwormPerionyx excavatus, and to assess the influence of this earthworm on the decomposition of these materials. Maize stover was found to be the most suitable of the food materials used. Population growth ofP. excavatus was enhanced by addition of these organic materials in the temperature range 24°-30°C, while the population was adversely affected above 30°C in a vermiculture system. Addition of earthworms accelerated the breakdown of residues, which ultimately resulted in a lowering of the C:N ratio, water-soluble carbon and carbohydrates, and increased ash percentage and cation exchange capacity compared with their respective controls.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key wordsPerionyx excavatus ; Earthworms ; Feeding activity ; Plant residues ; Mineralization ; Maturity parameters ; Vermicomposting ; C/N ratio ; Straw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An outdoor study was undertaken using polyethylene containers to assess the suitability of different organic residues, soybean straw (Glycine max L. Merril.), wheat straw (Triticum aestivum L.), maize stover (Zea mays L.), chickpea straw (cicer arietinum L.) and city garbage, as food for the tropical epigeic earthworm Perionyx excavatus, and to assess the influence of this earthworm on the decomposition of these materials. Maize stover was found to be the most suitable of the food materials used. Population growth of P. excavatus was enhanced by addition of these organic materials in the temperature range 24°–30°C, while the population was adversely affected above 30°C in a vermiculture system. Addition of earthworms accelerated the breakdown of residues, which ultimately resulted in a lowering of the C:N ratio, water-soluble carbon and carbohydrates, and increased ash percentage and cation exchange capacity compared with their respective controls.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...