Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-10
    Description: Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ong-Abdullah, Meilina -- Ordway, Jared M -- Jiang, Nan -- Ooi, Siew-Eng -- Kok, Sau-Yee -- Sarpan, Norashikin -- Azimi, Nuraziyan -- Hashim, Ahmad Tarmizi -- Ishak, Zamzuri -- Rosli, Samsul Kamal -- Malike, Fadila Ahmad -- Bakar, Nor Azwani Abu -- Marjuni, Marhalil -- Abdullah, Norziha -- Yaakub, Zulkifli -- Amiruddin, Mohd Din -- Nookiah, Rajanaidu -- Singh, Rajinder -- Low, Eng-Ti Leslie -- Chan, Kuang-Lim -- Azizi, Norazah -- Smith, Steven W -- Bacher, Blaire -- Budiman, Muhammad A -- Van Brunt, Andrew -- Wischmeyer, Corey -- Beil, Melissa -- Hogan, Michael -- Lakey, Nathan -- Lim, Chin-Ching -- Arulandoo, Xaviar -- Wong, Choo-Kien -- Choo, Chin-Nee -- Wong, Wei-Chee -- Kwan, Yen-Yen -- Alwee, Sharifah Shahrul Rabiah Syed -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):533-7. doi: 10.1038/nature15365. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ; Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ; United Plantations Berhad, Jendarata Estate, 36009 Teluk Intan, Perak, Malaysia. ; Applied Agricultural Resources Sdn Bhd, No. 11, Jalan Teknologi 3/6, Taman Sains Selangor 1, 47810 Kota Damansara, Petaling Jaya, Selangor, Malaysia. ; FELDA Global Ventures R&D Sdn Bhd, c/o FELDA Biotechnology Centre, PT 23417, Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia. ; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352475" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing/genetics ; Arecaceae/*genetics/metabolism ; *DNA Methylation ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Fruit/genetics ; Genes, Homeobox/genetics ; Genetic Association Studies ; Genome, Plant/*genetics ; Introns/genetics ; Molecular Sequence Data ; *Phenotype ; Plant Oils/analysis/metabolism ; RNA Splice Sites/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Laura M -- Huber, Michael -- Doores, Katie J -- Falkowska, Emilia -- Pejchal, Robert -- Julien, Jean-Philippe -- Wang, Sheng-Kai -- Ramos, Alejandra -- Chan-Hui, Po-Ying -- Moyle, Matthew -- Mitcham, Jennifer L -- Hammond, Phillip W -- Olsen, Ole A -- Phung, Pham -- Fling, Steven -- Wong, Chi-Huey -- Phogat, Sanjay -- Wrin, Terri -- Simek, Melissa D -- Protocol G Principal Investigators -- Koff, Wayne C -- Wilson, Ian A -- Burton, Dennis R -- Poignard, Pascal -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Sep 22;477(7365):466-70. doi: 10.1038/nature10373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21849977" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/biosynthesis/immunology ; Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/*immunology ; Cell Line ; Epitope Mapping ; Epitopes/chemistry/immunology ; Glycoproteins/chemistry/immunology ; Glycosylation ; HEK293 Cells ; HIV/*classification/*immunology/isolation & purification ; HIV Antibodies/*immunology ; HIV Infections/immunology/therapy ; Human Immunodeficiency Virus Proteins/chemistry/immunology ; Humans ; Immune Sera/blood/immunology ; Molecular Sequence Data ; Neutralization Tests
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-30
    Description: Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Xiangguo -- Wong, Gary -- Audet, Jonathan -- Bello, Alexander -- Fernando, Lisa -- Alimonti, Judie B -- Fausther-Bovendo, Hugues -- Wei, Haiyan -- Aviles, Jenna -- Hiatt, Ernie -- Johnson, Ashley -- Morton, Josh -- Swope, Kelsi -- Bohorov, Ognian -- Bohorova, Natasha -- Goodman, Charles -- Kim, Do -- Pauly, Michael H -- Velasco, Jesus -- Pettitt, James -- Olinger, Gene G -- Whaley, Kevin -- Xu, Bianli -- Strong, James E -- Zeitlin, Larry -- Kobinger, Gary P -- U19 AI109762/AI/NIAID NIH HHS/ -- U19AI109762/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Oct 2;514(7520):47-53. doi: 10.1038/nature13777. Epub 2014 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; Kentucky BioProcessing, Owensboro, Kentucky 42301, USA. ; Mapp Biopharmaceutical Inc., San Diego, California 92121, USA. ; 1] United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, Maryland 21702, USA [2] Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland 21702, USA. ; Institute of Infectious Disease, Henan Centre for Disease Control and Prevention, Zhengzhou, 450012 Henan, China. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba R3A 1S1, Canada. ; 1] National Laboratory for Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada [4] Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25171469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology/*therapeutic use ; Antibodies, Neutralizing/immunology/therapeutic use ; Antibodies, Viral/immunology/*therapeutic use ; Cross Reactions/immunology ; Ebolavirus/immunology ; Enzyme-Linked Immunosorbent Assay ; Female ; Guinea ; Guinea Pigs ; Hemorrhagic Fever, Ebola/blood/*drug therapy/immunology/virology ; *Immunization, Passive ; Macaca mulatta/immunology/virology ; Male ; Molecular Sequence Data ; Sequence Alignment ; Viral Envelope Proteins/chemistry/immunology ; Viremia/drug therapy/immunology/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-05
    Description: The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warren, Travis K -- Jordan, Robert -- Lo, Michael K -- Ray, Adrian S -- Mackman, Richard L -- Soloveva, Veronica -- Siegel, Dustin -- Perron, Michel -- Bannister, Roy -- Hui, Hon C -- Larson, Nate -- Strickley, Robert -- Wells, Jay -- Stuthman, Kelly S -- Van Tongeren, Sean A -- Garza, Nicole L -- Donnelly, Ginger -- Shurtleff, Amy C -- Retterer, Cary J -- Gharaibeh, Dima -- Zamani, Rouzbeh -- Kenny, Tara -- Eaton, Brett P -- Grimes, Elizabeth -- Welch, Lisa S -- Gomba, Laura -- Wilhelmsen, Catherine L -- Nichols, Donald K -- Nuss, Jonathan E -- Nagle, Elyse R -- Kugelman, Jeffrey R -- Palacios, Gustavo -- Doerffler, Edward -- Neville, Sean -- Carra, Ernest -- Clarke, Michael O -- Zhang, Lijun -- Lew, Willard -- Ross, Bruce -- Wang, Queenie -- Chun, Kwon -- Wolfe, Lydia -- Babusis, Darius -- Park, Yeojin -- Stray, Kirsten M -- Trancheva, Iva -- Feng, Joy Y -- Barauskas, Ona -- Xu, Yili -- Wong, Pamela -- Braun, Molly R -- Flint, Mike -- McMullan, Laura K -- Chen, Shan-Shan -- Fearns, Rachel -- Swaminathan, Swami -- Mayers, Douglas L -- Spiropoulou, Christina F -- Lee, William A -- Nichol, Stuart T -- Cihlar, Tomas -- Bavari, Sina -- R01 AI113321/AI/NIAID NIH HHS/ -- R01AI113321/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Mar 17;531(7594):381-5. doi: 10.1038/nature17180. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA. ; United States Army Medical Research Institute of Infectious Diseases, Therapeutic Development Center, Frederick, Maryland 21702, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. ; Boston University School of Medicine, Boston, Massachusetts 02118, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934220" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/pharmacokinetics/pharmacology/therapeutic use ; Amino Acid Sequence ; Animals ; Antiviral Agents/pharmacokinetics/pharmacology/*therapeutic use ; Cell Line, Tumor ; Ebolavirus/drug effects ; Female ; HeLa Cells ; Hemorrhagic Fever, Ebola/*drug therapy/prevention & control ; Humans ; Macaca mulatta/*virology ; Male ; Molecular Sequence Data ; Organ Specificity ; Prodrugs/pharmacokinetics/pharmacology/therapeutic use ; Ribonucleotides/pharmacokinetics/pharmacology/*therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-11
    Description: The RV144 trial demonstrated 31% vaccine efficacy at preventing human immunodeficiency virus (HIV)-1 infection. Antibodies against the HIV-1 envelope variable loops 1 and 2 (Env V1 and V2) correlated inversely with infection risk. We proposed that vaccine-induced immune responses against V1/V2 would have a selective effect against, or sieve, HIV-1 breakthrough viruses. A total of 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V2 at amino acid positions 169 and 181. Vaccine efficacy against viruses matching the vaccine at position 169 was 48% (confidence interval 18% to 66%; P = 0.0036), whereas vaccine efficacy against viruses mismatching the vaccine at position 181 was 78% (confidence interval 35% to 93%; P = 0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signature sites (21 +/- 7 A) and their match/mismatch dichotomy indicate that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2-binding antibodies and reduced risk of HIV-1 acquisition, and provide evidence that vaccine-induced V2 responses plausibly had a role in the partial protection conferred by the RV144 regimen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551291/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551291/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rolland, Morgane -- Edlefsen, Paul T -- Larsen, Brendan B -- Tovanabutra, Sodsai -- Sanders-Buell, Eric -- Hertz, Tomer -- deCamp, Allan C -- Carrico, Chris -- Menis, Sergey -- Magaret, Craig A -- Ahmed, Hasan -- Juraska, Michal -- Chen, Lennie -- Konopa, Philip -- Nariya, Snehal -- Stoddard, Julia N -- Wong, Kim -- Zhao, Hong -- Deng, Wenjie -- Maust, Brandon S -- Bose, Meera -- Howell, Shana -- Bates, Adam -- Lazzaro, Michelle -- O'Sullivan, Annemarie -- Lei, Esther -- Bradfield, Andrea -- Ibitamuno, Grace -- Assawadarachai, Vatcharain -- O'Connell, Robert J -- deSouza, Mark S -- Nitayaphan, Sorachai -- Rerks-Ngarm, Supachai -- Robb, Merlin L -- McLellan, Jason S -- Georgiev, Ivelin -- Kwong, Peter D -- Carlson, Jonathan M -- Michael, Nelson L -- Schief, William R -- Gilbert, Peter B -- Mullins, James I -- Kim, Jerome H -- 2R37AI05465-10/AI/NIAID NIH HHS/ -- K25 AI087397/AI/NIAID NIH HHS/ -- R01 AI054165/AI/NIAID NIH HHS/ -- R37 AI054165/AI/NIAID NIH HHS/ -- UM1 AI068635/AI/NIAID NIH HHS/ -- Y01 AI2642-12/AI/NIAID NIH HHS/ -- Y1-AI-2642-12/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Oct 18;490(7420):417-20. doi: 10.1038/nature11519. Epub 2012 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Military HIV Research Program, Silver Spring, Maryland 20910, USA. mrolland@hivresearch.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22960785" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/adverse effects/*immunology ; Genetic Predisposition to Disease ; HIV Antibodies/immunology ; HIV Infections/immunology/*prevention & control/*virology ; HIV-1/*genetics/*immunology ; Humans ; Molecular Sequence Data ; Phylogeny ; Randomized Controlled Trials as Topic ; Sequence Analysis, DNA ; env Gene Products, Human Immunodeficiency Virus/*genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...