Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANCREATIC-CANCER  (27)
Collection
Keywords
Publisher
  • 1
    Keywords: CANCER ; EXPRESSION ; SURVIVAL ; tumor ; CELL ; Germany ; human ; COHORT ; PROTEIN ; PROTEINS ; cell line ; TISSUE ; TUMORS ; LINES ; PATIENT ; FAMILY ; CARCINOGENESIS ; TISSUES ; CELL-LINES ; LESIONS ; PROGRESSION ; immunohistochemistry ; CELL-LINE ; LINE ; LOCALIZATION ; POLYMERASE-CHAIN-REACTION ; adenocarcinoma ; ADENOCARCINOMAS ; pathology ; OVEREXPRESSION ; cell lines ; pancreatic cancer ; protein expression ; chemoresistance ; SUBCELLULAR-LOCALIZATION ; SUBSET ; pancreas ; PANCREATIC-CANCER ; FAMILIES ; DUCTAL ADENOCARCINOMA ; polymerase chain reaction ; TUMOR TISSUE ; LEVEL ; analysis ; methods ; pancreatic ; RARE ; SURVIVAL-DATA ; Reverse Transcriptase Polymerase Chain Reaction
    Abstract: AIMS: To determine the role of two antiapoptotic proteins of the IAP family, cIAP1 and cIAP2, in human pancreatic carcinogenesis. METHODS: mRNA levels were measured in pancreatic tissues and pancreatic cancer cell lines by quantitative reverse-transcriptase polymerase chain reaction (QRT-PCR). Protein expression was assessed in pancreatic cancer cell lines by immunoblotting and in pancreatic tissues by immunohistochemistry and correlated with pathological and survival data. RESULTS: cIAP1 expression was constantly high in non-neoplastic pancreatic tissues, in PanIN lesions, as well as in a subset of primary and metastatic pancreatic ductal adenocarcinomas (PDAC), and a preferential cytoplasmatic localization was observed in the tumor tissues. cIAP1 expression was rare in a cohort of cystic tumors. cIAP2 mRNA levels were significantly higher (2.4 fold) in PDAC than in the normal tissues. cIAP2 protein was overexpressed in PDAC and was detectable in low-grade and high-grade PanIN lesions. Moreover, cIAP2 was frequently expressed in pancreatic cystic tumors. cIAP1 and cIAP2 mRNA and protein were detected in all the examined cell lines. Survival analysis revealed a shorter survival in patients with cIAP1/cIAP2-positive tumors. CONCLUSIONS: cIAP1 might contribute to the regulation of the apoptotic process in the normal and in the neoplastic pancreas, depending on its subcellular localization. cIAP2 overexpression is a frequent and early event in pancreatic cancer progression and could therefore potentially influence important pathophysiological aspects of PDAC, such as anoikis or chemoresistance
    Type of Publication: Journal article published
    PubMed ID: 16775116
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; GROWTH-FACTOR ; CELL ; Germany ; TISSUE ; LINES ; TIME ; FAMILY ; INDUCTION ; TISSUES ; CONTRAST ; CELL-LINES ; DOWN-REGULATION ; MEMBER ; MEMBERS ; PHOSPHORYLATION ; BREAST-CANCER ; antibodies ; antibody ; immunohistochemistry ; ASSAY ; CARCINOMA CELLS ; CELL-LINE ; LINE ; CANCER-CELLS ; BETA ; RT-PCR ; adenocarcinoma ; p21 ; CELL-SURFACE ; RECEPTORS ; DIFFERENTIAL EXPRESSION ; cell lines ; pancreatic cancer ; CELL-GROWTH ; signaling ; PANCREATIC-CANCER ; FAMILIES ; DUCTAL ADENOCARCINOMA ; independent growth ; ENHANCED EXPRESSION ; TGF-beta 1 ; HEPARAN-SULFATE PROTEOGLYCANS ; LEVEL ; pancreatic ; ASSAYS ; SULFATE ; downregulation ; lymph node ; LYMPH-NODE ; correlation ; VIEW ; DECREASED SURVIVAL ; activin ; bone morphogenic protein ; CONTROLS CELLULAR-RESPONSES ; glypican ; heparan sulfate proteoglycans ; SMAD PROTEINS
    Abstract: Glypican 1 (GPC1) is a cell surface heparan sulfate proteoglycan that acts as a co-receptor for heparin-binding growth factors as well as for members of the TGF-beta family. GPC1 plays a role in pancreatic cancer by regulating growth factor responsiveness. In view of the importance of members of the TGF-beta family in pancreatic cancer, in the present study, the role of GPC1 in TGF-beta, BMP and activin signaling was analyzed. Quantitative RT-PCR and immunohistochemistry were utilized to analyze GPC1 and TGF-beta, BMP and activin receptor expression levels. Panc-1 and T3M4 pancreatic cancer cells were transfected in a stable manner with a GPC1 antisense expression construct. Anchorage-dependent and -independent growth was determined by MTT and soft agar assays. TGF-beta 1, activin-A and BMP-2 responsiveness was determined by MTT assays and immunoblotting with p21, p-Smad1, and p-Smad2 antibodies. QRT-PCR demonstrated increased GPC1 mRNA levels in pancreatic ductal adenocarcinoma (PDAC) compared to normal pancreatic tissues (NPT), as described previously. There was a significant correlation between GPC1 mRNA levels and T beta RII, act-R1a, act-R1b, act-R2a, BMP-R1a, and BMP-R2 mRNA expression in NPT. In contrast, GPC1 mRNA expression correlated directly with act-R1a and BMP-R1a in NO PDAC cases and with act-R2a and BMP-R1a in lymph node positive cases. Down-regulation of GPC1 resulted in increased doubling time in Panc-1 but not in T3M4 cells, and decreased anchorage-independent growth in both cell lines. GPC1 down-regulation resulted in a slightly altered response towards TGF-beta 1, activin-A and BMP-2 in terms of growth, p21 induction and Smad2 phosphorylation. In conclusion, enhanced GPC1 expression correlates with BMP and activin receptors in pancreatic cancer. GPC1 down-regulation suppresses pancreatic cancer cell growth and slightly modifies signaling of members of the TGF-beta family of growth factors
    Type of Publication: Journal article published
    PubMed ID: 17016645
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; GROWTH ; IN-VITRO ; carcinoma ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; GENE ; GENES ; LINES ; MICE ; PATIENT ; IMPACT ; INDUCTION ; treatment ; 5-FLUOROURACIL ; prevention ; resistance ; AGE ; NUDE-MICE ; CELL-LINE ; chemotherapy ; LINE ; CARCINOMAS ; specificity ; CISPLATIN ; pancreatic cancer ; CANCER-THERAPY ; CYTOTOXICITY ; signaling ; GEMCITABINE ; RE ; PANCREATIC-CANCER ; cancer therapy ; pancreatic ; GENDER ; dexamethasone ; GLUCOCORTICOID-INDUCED APOPTOSIS ; NAUSEA ; HISTOLOGY ; in vivo ; surgical resection
    Abstract: Background: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. Methods: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Antiapoptotic signaling in response to DEX was examined by Western blot analysis. Results: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. Conclusion: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients
    Type of Publication: Journal article published
    PubMed ID: 16539710
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; carcinoma ; Germany ; human ; KINASE ; MODEL ; MODELS ; PATHWAY ; PATHWAYS ; liver ; NEW-YORK ; PROTEIN ; PROTEINS ; SAMPLE ; SAMPLES ; transcription ; TISSUE ; TRANSDUCTION ; PATIENT ; ACTIVATION ; TRANSCRIPTION FACTOR ; CONTRAST ; PHOSPHORYLATION ; protein kinase ; PROTEIN-KINASE ; signal transduction ; SIGNAL ; antibodies ; antibody ; FORM ; TRANSCRIPTION FACTORS ; DECREASE ; genetics ; SIGNAL-TRANSDUCTION ; MUSCLE ; Jun ; DEGRADATION ; SKELETAL-MUSCLE ; ATROPHY ; pancreatic cancer ; heredity ; REGULATOR ; REGULATORS ; BIOPSY ; ANIMAL-MODELS ; CHAIN ; pancreas ; RE ; PANCREATIC-CANCER ; INCREASE ; TUMORIGENESIS ; HEAVY ; PROTEIN-SYNTHESIS ; WEIGHT ; LEVEL ; PHOSPHATIDYLINOSITOL 3-KINASE ; ANIMAL-MODEL ; USA ; LOSSES ; cachexia ; animal ; ACTIN ; animal model ; BIOPSIES ; comparison ; HYPERTROPHY ; FOXO TRANSCRIPTION FACTORS ; Skeletal muscle ; UBIQUITIN LIGASES
    Abstract: In animal models of cachexia, alterations in the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway have been demonstrated in atrophying skeletal muscles. Therefore, we assessed the activity of proteins in this pathway in muscle and liver biopsies from 16 patients undergoing pancreatectomy for suspect of carcinoma. Patients were divided in a non-cachectic or cachectic group according to their weight loss before operation. Extracts of skeletal muscle and liver tissue from eight cachectic patients with pancreas carcinoma and eight non-cachectic patients were analysed by Western blotting using pan- and phospho-specific antibodies directed against eight important signal transduction proteins of the PI3-K/Akt pathway. Muscle samples from cachectic patients revealed significantly decreased levels of myosin heavy chain (-45%) and actin (-18%) in comparison to non-cachectic samples. Akt protein level was decreased by -55%. The abundance and/or phosphorylation of the transcription factors Foxo1 and Foxo3a were reduced by up to fourfold in muscle biopsies from cachectic patients. Various decreases of the phosphorylated forms of the protein kinases mTOR (-82%) and p70S6K (-39%) were found. In contrast to skeletal muscle, cachexia is associated with a significant increase in phosphorylated Akt level in the liver samples with a general activation of the PI3-K/Akt cascade. Our study demonstrates a cachexia-associated loss of Akt-dependent signalling in human skeletal muscle with decreased activity of regulators of protein synthesis and a disinhibition of protein degradation
    Type of Publication: Journal article published
    PubMed ID: 17333095
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; SURVIVAL ; tumor ; Germany ; DEATH ; DISEASE ; MORTALITY ; NEW-YORK ; PROTEIN ; SURGERY ; TIME ; PATIENT ; IMPACT ; prognosis ; NO ; PERFORMANCE ; PROGRESSION ; DIFFERENCE ; COUNTRIES ; RATES ; DATABASE ; RESECTION ; adenocarcinoma ; PREVALENCE ; pancreatic cancer ; MULTICENTER ; pancreas ; PANCREATIC-CANCER ; WEIGHT ; LEVEL ; methods ; GASTROINTESTINAL CANCER ; USA ; CURATIVE RESECTION ; ANOREXIA ; cachexia ; ENERGY-EXPENDITURE ; HEMOGLOBIN ; DEATHS ; HEAD RESECTION ; nutritional status ; UBIQUITIN-DEPENDENT PROTEOLYSIS
    Abstract: Introduction Pancreatic cancer is the fourth leading cause of cancer-related death in Western countries with a poor prognosis (5-year survival rates, 25% in patients after tumor resection with adjuvant treatment; overall, the 5-year survival rate is about 4%; Jemal et al., CA Cancer J Clin, 55:10-30, 2005). Many patients develop a cachectic status during the progression of the disease, and this syndrome accounts for up to 80% of deaths in patients with advanced pancreatic cancer. Remarkably, there are only a few data available on the impact of cachexia in patients with pancreatic cancer scheduled for tumor resection. Material and Methods Therefore, in this study, 227 consecutive patients with ductal adenocarcinoma of the pancreas were documented over an 18-month period regarding the prevalence of cachexia and its influence on perioperative morbidity and mortality with a special interest to postoperative weight gain and survival in a prospectively designed database and followed up. Results In 40.5% of the patients, cachexia was already present at the time of operation. The cachectic patients did present in a worse nutritional status, represented by lower protein, albumins, and hemoglobin levels. Despite no significant differences in tumor size, lymph node status, and CA19-9 levels, the resection rate in patients with cachexia was reduced (77.8% vs. 48.9%) due to a higher rate of metastatic disease in patients with cachexia. The morbidity and in-hospital mortality revealed no significant difference. However, patients with and without cachexia lost weight after operation, and the weight gain started not until 6 months after operation. The survival in patients with cachexia was significantly reduced in patients undergoing tumor resection as well as in palliative treated patients. Conclusion Cachexia has a significant impact on survival and performance status in palliative patients as well as in patients operated for pancreatic cancer. But tumor-related cachexia is not necessarily dependent on tumor size or load and that metastatic dedifferentiation of the tumor might be a critical step in the development of tumor-associated cachexia
    Type of Publication: Journal article published
    PubMed ID: 18347879
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; INVASION ; proliferation ; SURVIVAL ; tumor ; carcinoma ; CELL-PROLIFERATION ; Germany ; human ; FOLLOW-UP ; DISEASE ; liver ; PROTEIN ; MOLECULES ; TISSUE ; TUMORS ; TIME ; PATIENT ; MARKER ; DONOR ; prognosis ; TISSUES ; MOLECULE ; BREAST-CANCER ; GLYCOPROTEIN ; IDENTIFICATION ; MALIGNANCIES ; METASTASIS ; metastases ; PCR ; CANCER-CELLS ; ADHESION ; MIGRATION ; CANCER-PATIENTS ; adenocarcinoma ; LIVER METASTASES ; CANCER PATIENTS ; HEALTHY ; pancreatic cancer ; chronic pancreatitis ; SERUM ; ELISA ; MALIGNANCY ; RECOMBINANT ; PANCREATIC-CANCER ; TUMOR-GROWTH ; DUCTAL ADENOCARCINOMA ; INCREASE ; extracellular matrix ; REAL-TIME ; cell adhesion ; cell proliferation ; LEVEL ; OSTEOPONTIN ; SERUM-LEVELS ; downregulation ; function ; BLOCKADE ; IMMUNOHISTOCHEMICAL ANALYSIS ; INVASIVENESS ; lymph node ; LYMPH-NODE ; PLASMA OSTEOPONTIN ; restricting ; serum marker
    Abstract: Pancreatic ductal adenocarcinoma ( PDAC) is one of the most aggressive malignancies, with an overall 5-year survival rate of less than 5%. Invasive tumor growth and early metastasis are two important reasons for this dismal prognosis. Osteopontin ( OPN) is a secretory protein with a variety of functions, for example in cell adhesion and migration, inflammatory reaction and apoptosis. In this study the functional role of OPN in human pancreatic cancer and its potential use as a disease marker were analyzed. By real time quantitative PCR, there was a 2.2- fold and 1.6- fold increase of OPN mRNA in pancreatic cancers (n = 23) and chronic pancreatitis samples (n = 22), respectively, compared to normal pancreatic tissues (n = 20). Immunohistochemical analysis demonstrated OPN staining in 60% of the primary pancreatic tumors and in 72% of the lymph node and liver metastases. ELISA analysis of serum samples obtained from pancreatic cancer patients (n = 70), chronic pancreatitis patients (n = 12), and healthy donors (n = 20) showed a 1.6-fold increase in OPN serum levels in patients with tumors and a 1.9-fold increase in patients with chronic pancreatitis. Recombinant human OPN significantly increased the invasiveness of pancreatic cancer cells, without having any impact on cell proliferation. In addition, downregulation of OPN by specific siRNA molecules decreased pancreatic cancer cell invasion. In conclusion, OPN serum levels in pancreatic cancer and chronic pancreatitis patients are not significantly different, thereby restricting its role as a prognostic or follow-up marker. Our results do suggest, however, that blockade of OPN might be useful as a therapeutic approach to inhibit invasion and metastasis of pancreatic cancer cells
    Type of Publication: Journal article published
    PubMed ID: 15970685
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: CANCER ; EXPRESSION ; tumor ; carcinoma ; Germany ; DEATH ; PROTEIN ; PROTEINS ; TISSUE ; TUMORS ; PATIENT ; MECHANISM ; FAMILY ; MALIGNANCIES ; resistance ; chemotherapy ; LOCALIZATION ; SUPERFAMILY ; Jun ; adenocarcinoma ; QUANTITATIVE-ANALYSIS ; drug resistance ; DRUG-RESISTANCE ; MULTIDRUG-RESISTANCE ; pancreatic cancer ; pancreatic carcinoma ; CONJUGATE EXPORT PUMP ; SUBSTRATE-SPECIFICITY ; ONCOLOGY-GROUP ; PHASE-II ; multidrug resistance ; MALIGNANCY ; PANCREATIC-CANCER ; DUCTAL ADENOCARCINOMA ; P-GLYCOPROTEIN ; TRANSPORTER ; BASOLATERAL HEPATOCYTE MEMBRANE ; multidrug resistance protein ; TISSUE SAMPLES ; MRP3 ; ABCC family ; CYCLIC-NUCLEOTIDES ; INDUCIBLE EXPRESSION ; MDR1 ; MRP ; NORMAL HUMAN TISSUES
    Abstract: Pancreatic ductal adenocarcinoma is among the top 10 causes of death from cancer in industrialized countries. In comparison with other gastrointestinal malignancies, pancreatic cancer is one of the tumors most resistant to chemotherapy. An important mechanism of tumor multidrug resistance is increased drug efflux mediated by several transporters of the ABC superfamily. Especially BCRP (ABCG2), MDR1 P-glycoprotein (ABCB1) and members of the MRP (ABCC) family are important in mediating drug resistance. The MRP family consists of 9 members (MRP1-MRP9) with MRP1-MRP6 being best characterized with respect to protein localization and substrate selectivity. Here, we quantified the mRNA expression of BCRP and of all MRP family members in normal human pancreas and pancreatic carcinoma and analyzed the mRNA level of the transporters most abundantly expressed in pancreatic tissue, BCRP, MRP1, MRP3, MRP4 and MRP5, in 37 tissue samples. In addition, we determined the localization of the 4 MRP proteins in normal human pancreas and in pancreatic carcinoma. The expression of BCRP, MRP1 and MRP4 mRNA did not correlate with tumor stage or grading. On the other hand, the expression of MRP3 mRNA was upregulated in pancreatic carcinoma samples and was correlated with tumor grading. The MRP5 mRNA level was significantly higher in pancreatic carcinoma tissue compared to normal pancreatic tissue. These data suggest that MRP3 and MRP5 are involved in drug resistance of pancreatic tumors and that quantitative analysis of their expression may contribute to predict the benefit of chemotherapy in patients with pancreatic cancer. © 2005 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 15688370
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; tumor ; carcinoma ; FACTOR RECEPTOR ; Germany ; GENES ; HYBRIDIZATION ; microarray ; PROTEIN ; TISSUE ; MICE ; TIME ; PATIENT ; COMPLEX ; COMPLEXES ; DONOR ; DOMAIN ; TISSUES ; 5-FLUOROURACIL ; TRANSPORT ; IN-SITU ; LESIONS ; immunohistochemistry ; MALIGNANCIES ; ASSAY ; UP-REGULATION ; PROSTATE-CANCER ; NUDE-MICE ; chemotherapy ; CANCER-CELLS ; LOCALIZATION ; adenocarcinoma ; sensitivity ; CISPLATIN ; MICROARRAY ANALYSIS ; OVEREXPRESSION ; expression profiling ; microdissection ; pancreatic cancer ; REGULATOR ; chronic pancreatitis ; CELL-GROWTH ; in situ hybridization ; MALIGNANCY ; GEMCITABINE ; PANCREATIC-CANCER ; DUCTAL ADENOCARCINOMA ; INCREASE ; independent growth ; TRANSFECTION ; ENHANCED EXPRESSION ; LEVEL ; ASSAYS ; downregulation ; PROLIFERATIVE ACTIVITY ; CHLORIDE ; chloride channel ; COLO-357 CELLS ; DECREASED SURVIVAL ; NA+/K+-ATPASE ; TGF-BETA RESPONSIVENESS ; TGFP
    Abstract: The expression and localization of FXYD domain containing ion transport regulator 3 (FXYD3), a transmembrane protein that acts as a chloride channel or chloride channel regulator, was analyzed in pancreatic tissues derived from donors and patients suffering from chronic pancreatitis (CP) or pancreatic ductal adenocarcinoma (PDAC) as well as in pancreatic cancer cells using QRT-PCR, laser-capture microdissection and microarray analysis, in situ hybridization and immunohistochemistry. FXYD3 antisense expressing T3M4 pancreatic cancer cells were generated and compared to control cells using anchorage-dependent and independent growth assays, and xenotransplantation into nude mice. FXYD3 mRNA levels were 3.4-fold increased in PDAC tissues compared to donor specimens (p = 0.006), and 3.9-fold increased in microdissected cancer cells compared to normal pancreatic ductal cells (p = 0.02). FXYD3 was localized in the tubular complexes and PanIN lesions of both CP and PDAC, as well as in pancreatic cancer cells. Downregulation of FXYD3 by stable antisense transfection increased significantly the doubling time of T3M4 pancreatic cancer cells from 44 +/- 2 hr to 55 +/- 12 hr (p = 0.02). Nude mice transplanted with antisense transfected cells displayed a significant increase in tumor doubling time from 3.3 days +/- 1.0 to 4.3 days +/- 0.43 (p = 0.058). Anchorage-independent growth and sensitivity to 5-fluorouracil, gemcitabine and cisplatin as well as to MgCl2 were not dependent on the level of FXYD3 expression. In conclusion, overexpression of FXYD3 in pancreatic cancer may contribute to the proliferative activity of this malignancy. (c) 2005 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 16003754
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: RECEPTOR ; SPECTRA ; ANGIOGENESIS ; APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; GROWTH ; GROWTH-FACTOR ; INHIBITOR ; tumor ; CELL ; FACTOR RECEPTOR ; Germany ; IN-VIVO ; INHIBITION ; KINASE ; THERAPY ; TYROSINE KINASE ; VIVO ; QUANTIFICATION ; DEATH ; DISEASE ; GENE ; PROTEIN ; cell line ; LINES ; PATIENT ; LIGAND ; FLOW ; cell cycle ; CELL-CYCLE ; CELL-LINES ; CYCLE ; protein kinase ; PROTEIN-KINASE ; TYROSINE KINASE INHIBITOR ; TARGET ; PROGRESSION ; immunohistochemistry ; ASSAY ; CELL-DEATH ; MUTATION ; CELL-LINE ; LINE ; MUTATIONS ; CANCER-PATIENTS ; POLYMERASE-CHAIN-REACTION ; PROTEIN-KINASE-C ; CHAIN-REACTION ; RECEPTORS ; CANCER PATIENTS ; point mutation ; cell lines ; pancreatic cancer ; RANDOMIZED-TRIAL ; TUMOR ANGIOGENESIS ; MANAGEMENT ; CELL-CYCLE PROGRESSION ; INHIBITORS ; CELL-GROWTH ; CHAIN ; ONCOLOGY ; PANCREATIC-CANCER ; TUMOR-GROWTH ; flow cytometry ; THERAPIES ; ACUTE MYELOID-LEUKEMIA ; polymerase chain reaction ; REAL-TIME ; POINT MUTATIONS ; MURINE MODEL ; TYROSINE KINASES ; analysis ; methods ; pancreatic ; ASSAYS ; cell death ; BIOLOGICAL-ACTIVITY ; USA ; POTENTIAL ROLE ; vascular endothelial growth factor ; COMPOUND ; in vivo ; SPECTRUM ; SPECIMENS ; KINASE INHIBITOR ; GROWTH-FACTOR-RECEPTOR ; receptor tyrosine kinase ; RECEPTOR TYROSINE KINASES ; - ; POINT ; modeling ; quantitative ; block ; ACTIVATING MUTATION ; ENDOTHELIAL GROWTH ; FLT3 ; FLT3 MUTATIONS ; INTERNATIONAL CONSENSUS ; PKC412 ; SOLID HUMAN TUMORS ; VEGF-RII
    Abstract: BACKGROUND. PKC412 is a kinase inhibitor that blocks protein kinase C (PKC), vascular endothelial growth factor receptors, platelet-derived growth factor receptor FLT3, and other class III receptor tyrosine kinases. The enthusiasm for this compound is based on its inhibitory effect even in the case of FLT3 mutations. The aim of this study was to analyze the role of FLT3 in pancreatic cancer and to study the biological activity of combined inhibition of neovascularization and mitogenesis in this disease. METHODS. FLT3 expression was analyzed in 18 pancreatic cancer specimens by real-time quantitative polymerase chain reaction (RTQ-PCR) and immunohistochemistry. Sixteen pancreatic cancer cell lines were screened for ITD and D835 point mutations of the FLT3 gene. MTT assays and anchorage-independent growth assays were used to study cell growth. Flow cytometry was used for cell cycle analysis and apoptosis quantification. In vivo AsPC-1 and HIAF-II cells were used for orthotopic tumor modeling. Immunohistochemistry was used to quantity tumor angiogenesis. RESULTS. FLT3 expression is down-regulated in pancreatic cancer. Activating FLT3 mutations (ITD, D835) were not detectable in any of the pancreatic cancer cell lines. Cell growth was significantly inhibited as cell-cycle progression was reduced and programmed cell death increased. In vivo PKC412 therapy resulted in a significant inhibition of orthotopic tumor growth with abrogation of tumor angiogenesis. CONCLUSIONS. These data highlight that PKC412 may be a new compound in target therapy of inoperable pancreatic cancer patients and suggest a potential role for the combined use of broad spectrum kinase inhibitors in the management of these patients
    Type of Publication: Journal article published
    PubMed ID: 17676584
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; CELLS ; EXPRESSION ; IN-VITRO ; INVASION ; carcinoma ; CELL ; Germany ; PATHWAY ; PATHWAYS ; VITRO ; GENE ; GENE-EXPRESSION ; GENES ; microarray ; RNA ; SAMPLE ; SAMPLES ; transcription ; COMPONENTS ; TISSUE ; LINES ; TRANSDUCTION ; ACTIVATION ; TISSUES ; BIOLOGY ; CELL-LINES ; fibroblasts ; MOLECULAR-BIOLOGY ; signal transduction ; SIGNAL ; BREAST-CANCER ; PROGRESSION ; immunohistochemistry ; gene expression ; DIFFERENCE ; NUMBER ; METASTASIS ; SIGNAL-TRANSDUCTION ; CELL-LINE ; LINE ; adenocarcinoma ; TARGETS ; MICROARRAY ANALYSIS ; OVEREXPRESSION ; DIFFERENTIAL EXPRESSION ; gene expression profiling ; expression profiling ; microdissection ; pancreatic cancer ; pancreatic carcinoma ; chronic pancreatitis ; WNT ; molecular biology ; molecular ; PANCREATIC-CANCER ; fibroblast ; DUCTAL ADENOCARCINOMA ; PANCREATITIS ; PROTOCOL ; quantitative RT-PCR ; interaction ; analysis ; DIFFERENTIALLY EXPRESSED GENES ; signalling ; WNT pathway ; tumor microenvironment ; ENGLAND ; SET ; MEDICINE ; quantitative ; PROFILE ; pancreatic ductal adenocarcinoma ; response ; interactions ; SFRP1 ; expression profile ; stroma ; in vitro ; ABERRANT METHYLATION ; WNT5a
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant desmoplastic stroma. Interactions between cancer and stromal cells play a critical role in tumour invasion, metastasis and chemoresistance. Therefore, we hypothesized that gene expression profile of the stromal components of pancreatic carcinoma is different from chronic pancreatitis and reflects the interaction with the tumour. We investigated the gene expression of eleven stromal tissues from PDAC, nine from chronic pancreatitis and cell lines of stromal origin using the Affymetrix U133 GeneChip set. The tissue samples were microdissected, the RNA was extracted, amplified and labelled using a repetitive in vitro transcription protocol. Differentially expressed genes were identified and validated using quantitative RT-PCR and immuno-histochemistry. We found 255 genes to be overexpressed and 61 genes to be underexpressed within the stroma of pancreatic carcinoma compared to the stroma of chronic pancreatitis. Analysis of the involved signal transduction pathways revealed a number of genes associated with the Wnt pathway of which the differential expression of SFRP1 and WNT5a was confirmed using immunohistochemistry. Moreover, we could demonstrate that WNT5a expression was induced in fibroblasts during cocultivation with a pancreatic carcinoma cell line. The identified differences in the expression profile of stroma cells derived from tumour compared to cells of inflammatory origin suggest a specific response of the tissue surrounding malignant cells. The overexpression of WNT5a, a gene involved in the non canonical Wnt signalling and chondrocyte development might contribute to the strong desmoplastic reaction seen in pancreatic cancer
    Type of Publication: Journal article published
    PubMed ID: 18298655
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...