Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PATIENT  (10)
  • 1
    Keywords: measurement ; tumor ; Germany ; LUNG ; CT ; IMAGES ; DISEASE ; NEW-YORK ; TUMORS ; PATIENT ; REDUCTION ; CONTRAST ; MRI ; CYCLE ; SEQUENCE ; NO ; DIFFERENCE ; REGION ; LOCALIZATION ; LENGTH ; COMPUTED-TOMOGRAPHY ; CURVES ; 3-DIMENSIONAL RECONSTRUCTION ; MOTION ; HEALTHY ; ORIENTATION ; LOCATION ; dynamic MRI ; ADULT ; ADULTS ; STRENGTH ; TRUEFISP ; HEALTHY-VOLUNTEERS ; PULMONARY-FUNCTION ; HEART-FAILURE ; EXPIRATION ; LUNG-VOLUMES ; breathing cycle ; diaphragmatic function
    Abstract: The purpose of this study was to assess diaphragmatic length and shortening during the breathing cycle in healthy volunteers and patients with a lung tumor using dynamic MRI (dMRI). In 15 healthy volunteers and 28 patients with a solitary lung tumor, diaphragmatic motion and length were measured during the breathing cycle using a trueFISP sequence (three images per second in the coronal and sagittal plane). Time-distance curves and maximal length reduction (= shortening) of the diaphragm were calculated. The influence of tumor localization on diaphragmatic shortening was examined. In healthy volunteers maximal diaphragmatic shortening was 30% in the coronal and 34% in the sagittal orientation, with no difference between both hemithoraces. Tumors of the upper and middle lung region did not affect diaphragmatic shortening. In contrast, tumors of the lower lung region changed shortening significantly (P〈0.05). In hemithoraces with a tumor in the lower region, shortening was 18% in the coronal and 19% in the sagittal plane. The ratio of diaphragmatic length change from inspiration to expiration changed significantly from healthy subjects (inspiration length &MGT; expiratory length, P〈0.05) to patients with a tumor in the lower lung region (inspiratory length = expiratory length). dMRI is a simple, non-invasive method to evaluate diaphragmatic motion and shortening in volunteers and patients during the breathing cycle. Tumors of the lower lung region have a significant influence on shortening of the diaphragm
    Type of Publication: Journal article published
    PubMed ID: 15127220
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: measurement ; CANCER ; radiotherapy ; tumor ; Germany ; LUNG ; IMAGES ; lung cancer ; LUNG-CANCER ; TISSUE ; TUMORS ; PATIENT ; MRI ; CYCLE ; SEQUENCE ; STAGE ; RADIATION-THERAPY ; MOBILITY ; REGION ; REGIONS ; WALL ; CURVES ; MOTION ; FUTURE ; LINEAR-ACCELERATOR ; LOCATION ; dynamic MRI ; TRUEFISP ; PULMONARY-FUNCTION ; EXTERNAL-BEAM RADIOTHERAPY ; breathing cycle ; CT SCANS ; DIAPHRAGM ; HEALTHY-SUBJECTS ; lung MRL radiotherapy ; tumor diameter
    Abstract: Background and purpose: To assess the influence of tumor diameter on tumor mobility and motion of the tumor bearing hemithorax during the whole breathing cycle in patients with stage I non-small-cell lung cancer (NSCLC) using dynamic MRI. Patients and methods: Breathing cycles of thirty-nine patients with solitary NSCLCs were examined using a trueFISP sequence (three images per second). Patients were divided into three groups according to the maximal tumor diameter in the transverse plane ( 〈3, 3-5 and 〉5 cm). Continuous time-distance curves and deep inspiratory and expiratory positions of the chest wall, the diaphragm and the tumor were measured in three planes. Motion of tumor-bearing and corresponding contralateral non-tumor bearing regions was compared. Results: Patients with a tumor 〉3 cm showed a significantly lower diaphragmatic motion of the tumor bearing compared with the non-tumor bearing hemithorax in the craniocaudal (CC) directions (tumors 3-5 cm: 23.4 +/- 1.2 vs 21.1 +/- 1.5 cm (P 〈0.05); tumors 〉5 cm: 23.4 +/- 1.2 vs 20.1 +/- 1.6 cm (P 〈0.01). Tumors 〉5 cm in the lower lung region showed a significantly lower mobility compared with tumors 〈3 cm (1.8 +/- 1.0 vs 3.8 +/- 0.7 cm, P 〈0.01) in the CC directions. Conclusions: Dynamic MRI is a simple non-invasive method to differentiate mobility of tumors with different diameters and its influence on the surrounding tissue. Tumor diameter has a significant influence on tumor mobility and this might be taken into account in future radiotherapy planning, (C) 2004 Elsevier Ireland Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 15588881
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; tumor ; carcinoma ; Germany ; LUNG ; imaging ; lung cancer ; LUNG-CANCER ; VOLUME ; TUMORS ; RESOLUTION ; PATIENT ; MRI ; SEQUENCE ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; REGION ; LOCALIZATION ; LENGTH ; PARAMETERS ; FUNCTION TESTS ; 3-DIMENSIONAL RECONSTRUCTION ; MOTION ; HEALTHY ; COMPLICATIONS ; dynamic MRI ; STAGE-I ; HEALTHY-VOLUNTEERS ; PULMONARY-FUNCTION ; HUMAN DIAPHRAGM SHAPE ; breathing cycle ; HEALTHY-SUBJECTS ; SPIROMETRY ; parallel imaging ; TEMPORAL RESOLUTION ; IA ; FEV1 /VC ; INTRATHORACIC TUMOR
    Abstract: Purpose: To assess relative forced expiratory volume in one second (FEV1/vital capacity (VQ in healthy subjects and patients with a lung tumor using dynamic magnetic resonance imaging (dMRI) parameters. Materials and Methods: In 15 healthy volunteers and 31 patients with a non-small-cell lung carcinoma stage I (NSCLC 1), diaphragmatic length change (LEI) and craniocaudal (CC) intrathoracic distance change within one second; from maximal inspiration (DEI) were divided by total length change (LEtotal, DEtotal) as a surrogate of spirometric FEV 1 /VC using a true fast imaging with steady-state precession (trueFISP) sequence TE/TR = 1.7/37.3 msec, temporal resolution = 3 images/second). Influence of tumor localization was examined. Results: In healthy volunteers FEV I /VC showed a highly significant correlation with LE1/LEtotal and DE1/DEtotal (r 〉 0.9. P 〈 0.01). In stage IB tumor patients, comparing tumor-bearing with the non-tumor-bearing hemithorax, there,was a significant difference in tumors of the middle (LE1 /LEtotal= 0.63 +/- 0.05 vs. 0. 73 +/- 0.04, DE1/DEtotal= 0.66 +/- 0.05 vs. 0.72 +/- 0.04; P 〈 0.05) and lower (P 〈 0.05) lung region. Stage IA tumor patients showed no significant differences with regard to healthy subjects. Conclusion: dMRI is a simple noninvasive method to locally determine LE1 /LEtotal and DE1 /DEtotal as a surrogate of FEV1/VC in volunteers and patients. Tumors of the middle and lower lung regions have a significant influence on these MRI parameters
    Type of Publication: Journal article published
    PubMed ID: 15723381
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Germany ; LUNG ; PERFUSION ; THERAPY ; CT ; imaging ; PATIENT ; MRI ; SEQUENCE ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; STATISTICAL-ANALYSIS ; MORPHOLOGY ; PULMONARY PERFUSION ; BODY ; CHILDREN ; SEGMENTS ; FEASIBILITY ; BREATH-HOLD ; LUNG PERFUSION ; fibrosis ; WEIGHT ; IMPAIRMENT ; CYSTIC-FIBROSIS ; cystic fibrosis ; SMALL AIRWAYS ; DEFECT ; GRAPPA ; CIRCULATION ; lung morphology
    Abstract: This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/alpha/ST: 600 ms/28 ms/180 degrees/6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/alpha: 0.8/1.9 ms/40 degrees), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P 〈 0.0001). Severe morphological changes led to perfusion defects (97%, P 〈 0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients
    Type of Publication: Journal article published
    PubMed ID: 16673092
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Germany ; LUNG ; chest ; CT ; DIAGNOSIS ; FOLLOW-UP ; imaging ; DISEASE ; EXPOSURE ; RESOLUTION ; radiation ; PATIENT ; IMPACT ; prognosis ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; MORPHOLOGY ; COMPUTED-TOMOGRAPHY ; FUNCTION TESTS ; magnetic resonance imaging (MRI) ; CHILDREN ; HRCT ; fibrosis ; ADULTS ; LIFE ; CYSTIC-FIBROSIS ; TESTS ; technique ; function ; cystic fibrosis ; RADIATION EXPOSURE ; lungs ; improvement of ; gold ; mucoviscidosis
    Abstract: Cystic fibrosis (CF) is a multi-systemic disease with major impact on the lungs. Pulmonary manifestation is crucial for the prognosis and life expectancy of patients. Imaging modalities and lung function tests reflect the pulmonary status in these patients. The standard imaging modality for diagnosis and follow-up of pulmonary changes is chest x-ray. The gold standard for the detection of parenchymal lung changes remains high resolution computed tomography (HRCT), but this is not used routinely for CF-patients due to radiation exposure. Magnetic resonance imaging (MRI) used to be of no importance in monitoring cystic fibrosis lung disease, as shown in studies from the 1980s and early 1990s. The continuing improvement of MRI techniques, however, has allowed for an adequate application of this non-radiation method in diagnosing the major pulmonary findings in CF, in addition to the assessment of lung function
    Type of Publication: Journal article published
    PubMed ID: 16437239
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Germany ; LUNG ; PERFUSION ; CT ; DIAGNOSIS ; IMAGES ; VISUALIZATION ; DISEASE ; DIFFERENTIATION ; RESOLUTION ; TIME ; PATIENT ; MR ; MRI ; MAGNETIC-RESONANCE ; arteries ; EMBOLISM ; MR-ANGIOGRAPHY ; magnetic resonance angiography ; pathology ; ANGIOGRAPHY ; HYPERTENSION ; contrast media ; MANAGEMENT ; PULMONARY ; PH ; ARTERIAL-HYPERTENSION ; ARTERIAL ; LEVEL ; IMAGE QUALITY ; CONSENSUS ; PULMONARY-ARTERIES ; TEMPORAL RESOLUTION ; HIGH-SPATIAL-RESOLUTION ; CTEPH ; IPAH
    Abstract: Differentiation between different forms of pulmonary hypertension (PH) is essential for correct disease management. The goal of this study was to elucidate the clinical impact of high spatial resolution MR angiography (SR-MRA) and time-resolved MRA (TR-MRA) to differentiate between patients with chronic thromboembolic PH (CTEPH) and idiopathic pulmonary arterial hypertension (IPAH). Ten PH patients and five volunteers were examined. Twenty TR-MRA data sets (TA 1.5 s) and SR-MRA (TA 23 s) were acquired. TR-MRA data sets were subtracted as angiography and perfusion images. Evaluation comprised analysis of vascular pathologies on a segmental basis, detection of perfusion defects, and bronchial arteries by two readers in consensus. Technical evaluation comprised evaluation of image quality, signal-to-noise ratio (SNR) measurements, and contrast-media passage time. Visualization of the pulmonary arteries was possible down to a subsegmental (SR-MRA) and to a segmental (TR-MRA) level. SR-MRA outperformed TR-MRA in direct visualization of intravascular changes. Patients with IPAH predominantly showed tortuous pulmonary arteries while in CTEPH wall irregularities and abnormal proximal-to-distal tapering was found. Perfusion images showed a diffuse pattern in IPAH and focal defects in CTEPH. TR-MRA and SR-MRA resulted in the same final diagnosis. Both MRA techniques allowed for differentiation between IPAH and CTEPH. Therefore, TR-MRA can be used in the clinical setting, especially in dyspneic patients
    Type of Publication: Journal article published
    PubMed ID: 16041529
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: BLOOD ; Germany ; LUNG ; SPIRAL CT ; VOLUME ; DISEASE ; POPULATION ; HEART ; TIME ; PATIENT ; BLOOD-FLOW ; blood flow ; FLOW ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; arteries ; PARAMETERS ; HYPERTENSION ; HEALTHY ; PULMONARY ; VELOCITY ; fibrosis ; PH ; HEALTHY-VOLUNTEERS ; CHRONIC THROMBOEMBOLISM ; CYSTIC-FIBROSIS ; ARTERIAL ; PULMONARY-ARTERIES ; early development ; bronchosystemic shunt ; cystic fibrosis
    Abstract: Cystic fibrosis (CF) leads to disabling lung disease and pulmonary hypertension (PH). The goal of this study was to assess the hemodynamics in the systemic and pulmonary arterial circulation of patients with CF using MRI. Ten patients with CF and 15 healthy volunteers were examined (1.5-T MRI). Phase-contrast flow measurements were assessed in the ascending aorta, pulmonary trunc, and the left and right pulmonary arteries (PA), resulting in the following parameters: peak velocity (PV) (centimeters per second) velocity rise gradient (VRG), time to PV (milliseconds), and the average area (centimeters squared). The blood flow ratio between the right and left lungs and the bronchosystemic shunt were calculated. For the ascending aorta and pulmonary trunc no parameter was significantly different between both populations. In the right PA a significantly lower PV (p=0.001) and VRG (p=0.02) was found. In the left PA there was a significantly (p=0.007) lower PV but no significant (p=0.07) difference between the VRG. The areas of the right (p=0.08) and left (p=0.5) PA were not significantly enlarged. For the volunteers a linear increase of PV in both PA was found with age, while it decreased in patients with CF. The blood flow distribution (right/left lung) showed no significant (p=0.7) difference between the groups. There was a significantly (p 〈 0.001) higher bronchosystemic shunt volume in patients with CF (1.3 l/min) than in volunteers (0.1 l/min). Magnetic resonance based flow measurements in the right and left PA showed first indications for early development of PH. The significant increase in bronchosystemic shunt volume might be indicative fo the extent of parenchymal changes
    Type of Publication: Journal article published
    PubMed ID: 15761712
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: Germany ; DISEASE ; PATIENT ; MRI ; CYCLE ; MOBILITY ; REPRODUCIBILITY ; FUNCTION TESTS ; THIN-SECTION CT ; MOTION ; HYPERTENSION ; dynamic MRI ; BREATH-HOLD ; DIAPHRAGM ; LEVEL ; INTERVAL ; INTRATHORACIC TUMOR ; healthy subjects ; LUNG-VOLUME ; primary pulmonary hypertension
    Abstract: To assess the stability and reproducibility of different breath-hold levels in healthy volunteers and patients using dynamic MRI (dMRI). In ten healthy volunteers and ten patients with pulmonary hypertension (PH) and normal lung function craniocaudal intrathoracic distances (CCD) were measured during inspiratory and expiratory breath-hold (15 s) (in healthy volunteers additionally at a self-chosen mid-inspiratory breath-hold) using dMRI (trueFISP, three images/s). To evaluate stability and intraobserver reproducibility of the different breath-hold levels, CCDs, time-distance curves, confidence intervals (CIs), Mann-Witney U test and regression equations were calculated. In healthy volunteers there was a substantial decrease of the CCD during the inspiratory breath-hold in contrast to the expiratory breath-hold. The CI at inspiration was 2.84 +/- 1.28 in the right and 2.1 +/- 0.68 in the left hemithorax. At expiration the CI was 2.54 +/- 1.18 and 2.8 +/- 1.48. Patients were significantly less able to hold their breath at inspiration than controls (P 〈 0.05). In patients CI was 4.53 +/- 4.06 and 3.46 +/- 2.21 at inspiration and 4.45 +/- 4.23 and 4.76 +/- 3.73 at expiration. Intraobserver variability showed no significant differences either in patients or in healthy subjects. Reproducibility was significantly lower at a self-chosen breath-hold level of the healthy volunteers. DMRI is able to differentiate stability and reproducibility of different breath-hold levels. Expiratory breath-hold proved to be more stable than inspiratory breath-hold in healthy volunteers and patients
    Type of Publication: Journal article published
    PubMed ID: 15968516
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Germany ; LUNG ; chest ; CT ; FOLLOW-UP ; imaging ; INFORMATION ; SYSTEM ; TOOL ; DEATH ; POPULATION ; computed tomography ; RESOLUTION ; PATIENT ; IMPACT ; CONTRAST ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; COMPUTED-TOMOGRAPHY ; CHILDREN ; LUNG PERFUSION ; ADULTS ; PHASE ; cystic fibrosis
    Abstract: Cystic fibrosis (CF) is the most frequent inherited disorder leading to premature death in the Caucasian population. As life expectancy is limited by pulmonary complications, repeated imaging [chest X-ray, multislice high-resolution computed tomography (MS-HRCT)] is required in the follow-up. Magnetic resonance imaging (MRI) of the lung parenchyma is a promising new diagnostic tool. Its value for imaging lung changes caused by CF compared with CT is demonstrated. MRI performs well when compared with CT, which serves as the gold standard. Its lack in spatial resolution is obvious, but advantages in contrast and functional assessment compensate for this limitation. Thus, MRI is a reasonable alternative for imaging the CF lung and should be introduced as a radiation-free modality for follow-up studies in CF patients. For further evaluation of the impact of MRI, systematic studies comparing MRI and conventional imaging modalities are necessary. Furthermore, the value of the additional functional MRI (fMRI) information has to be studied, and a scoring system for the morphological and functional aspect of MRI has to be established
    Type of Publication: Journal article published
    PubMed ID: 16941092
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: evaluation ; Germany ; LUNG ; chest ; CT ; FOLLOW-UP ; imaging ; DISEASE ; EXPOSURE ; computed tomography ; NUCLEAR-MEDICINE ; radiation ; PATIENT ; MRI ; magnetic resonance ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; DAMAGE ; tomography ; COMPUTED-TOMOGRAPHY ; CHILDREN ; nuclear medicine ; COMPLICATIONS ; LUNG PERFUSION ; radiology ; ADULTS ; LIFE ; CHEST-X-RAY ; CYSTIC-FIBROSIS ; RADIATION-EXPOSURE ; methods ; NUCLEAR ; USA ; correlation ; cystic fibrosis ; female ; Male ; MEDICINE ; multidetector computed tomography ; - ; comparison ; RESONANCE ; MDCT ; chest x-ray ; cystic fibrosis (CF) ; morphologic MRI ; RADIOGRAPH ; SCORING SYSTEMS
    Abstract: Objectives: As pulmonary complications are life limiting in patients with cystic fibrosis (CF), repeated chest imaging [chest x-ray, computed tomography (CT)] is needed for follow up. With the continuously rising life expectancy of CF patients, magnetic resonance imaging (MRI) as a radiation-free imaging modality might become more and more attractive. The goal of this study was to prospectively assess the value of MRI for evaluation of morphologic pulmonary CF-changes in comparison to established imaging modalities. Materials and Methods: Thirty-one CF patients (19 female, 12 male; mean age 16.7 years) with stable lung disease were examined by MRI: HASTE, coronal/transversal (TR/TE/alpha/TA: infinite/28 ms/180 degrees/18 s), multi-detector computed tomography (MDCT) (30 patients): 120 kV, dose modulated mAs, and chest x-ray (21 patients). Image evaluation: random order, 4 chest radiologists in consensus; chest x-ray: modified Chrispin-Norman score; CT and MRI: modified Helbich score. The maximal attainable score for chest x-ray was 34, for MRI and CT 25. Median scores, Pearson correlation coefficients, Bland-Altman plots, and concordance of MRI to CT on a lobar and segmental basis were calculated. Results: The median MRI and MDCT scores were 13 (min 3, max 20) respectively 13.5 (min 0, max 20). The median chest x-ray score was 14 (min 5, max 32). Pearson correlation coefficients: MRI/CT = 0.80, P 〈 0.0001; MRI/chest x-ray = 0.63, P 〈 0.0018; chest x-ray/CT = 0.75, P 〈 0.0001. The median lobe related concordance was 80% for bronchiectasis, 77% for mucus plugging, 93%, for sacculation/abscesses, and 100% for collapse/consolidation. Conclusions: Morphologic MRI of the lung in CF patients demonstrates comparable results to MDCT and chest x-ray. Because radiation exposure is an issue in CF patients, MRI might have the ability to be used as an appropriate alternative method for pulmonary imaging
    Type of Publication: Journal article published
    PubMed ID: 17984769
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...