Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; CANCER ; DISEASE ; RISK ; GENE ; ALLELES ; 8Q24 ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; CONSORTIUM ; TUMOR SUBTYPES ; URIC-ACID NEPHROLITHIASIS
    Abstract: Background: Genome-wide association studies (GWAS) identified variants at 19p13.1 and ZNF365 (10q21.2) as risk factors for breast cancer among BRCA1 and BRCA2 mutation carriers, respectively. We explored associations with ovarian cancer and with breast cancer by tumor histopathology for these variants in mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Methods: Genotyping data for 12,599 BRCA1 and 7,132 BRCA2 mutation carriers from 40 studies were combined. Results: We confirmed associations between rs8170 at 19p13.1 and breast cancer risk for BRCA1 mutation carriers [HR, 1.17; 95% confidence interval (CI), 1.07-1.27; P = 7.42 x 10(-4)] and between rs16917302 at ZNF365 (HR, 0.84; 95% CI, 0.73-0.97; P = 0.017) but not rs311499 at 20q13.3 (HR, 1.11; 95% CI, 0.94-1.31; P = 0.22) and breast cancer risk for BRCA2 mutation carriers. Analyses based on tumor histopathology showed that 19p13 variants were predominantly associated with estrogen receptor (ER)-negative breast cancer for both BRCA1 and BRCA2 mutation carriers, whereas rs16917302 at ZNF365 was mainly associated with ER-positive breast cancer for both BRCA1 and BRCA2 mutation carriers. We also found for the first time that rs67397200 at 19p13.1 was associated with an increased risk of ovarian cancer for BRCA1 (HR, 1.16; 95% CI, 1.05-1.29; P = 3.8 x 10(-4)) and BRCA2 mutation carriers (HR, 1.30; 95% CI, 1.10-1.52; P = 1.8 x 10(-3)). Conclusions: 19p13.1 and ZNF365 are susceptibility loci for ovarian cancer and ER subtypes of breast cancer among BRCA1 and BRCA2 mutation carriers. Impact: These findings can lead to an improved understanding of tumor development and may prove useful for breast and ovarian cancer risk prediction for BRCA1 and BRCA2 mutation carriers.
    Type of Publication: Journal article published
    PubMed ID: 22351618
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CANCER ; MODELS ; POPULATION ; RISK ; VARIANTS ; BREAST ; BREAST-CANCER ; OVARIAN-CANCER ; PHENOTYPE ; PREVALENCE ; ESTROGEN-RECEPTOR ; GENETIC SUSCEPTIBILITY ; LOCI ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; Risk prediction
    Abstract: ABSTRACT: INTRODUCTION: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumor. METHODS: We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumor, to assess the associations of twelve loci with breast cancer tumor characteristics. Associations were evaluated using a retrospective cohort approach. RESULTS: The results suggested stronger associations with ER-positive breast cancer than ER-negative for eleven loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, SNP rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele HR for ER-positive=1.35, 95%CI:1.17-1.56 vs HR=0.91, 95%CI:0.85-0.98 for ER-negative, P-heterogeneity=6.5e-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status. CONCLUSIONS: The associations of the twelve SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumor subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.
    Type of Publication: Journal article published
    PubMed ID: 22053997
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: POPULATION ; RISK ; TUMORS ; ASSOCIATION ; VARIANTS ; breast cancer ; SELECTION ; SUBTYPES ; breast cancer risk ; CONSORTIUM ; INVESTIGATORS ; MODIFIERS ; COMMON VARIANTS ; GENETIC-VARIANTS ; SUSCEPTIBILITY ALLELES ; ZNF365
    Abstract: BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers
    Type of Publication: Journal article published
    PubMed ID: 23544013
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CANCER ; EXPRESSION ; MODEL ; COMMON ; POPULATION ; RISK ; RISKS ; GENE ; PROTEIN ; BIOLOGY ; MOLECULAR-BIOLOGY ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; single nucleotide polymorphism ; SUSCEPTIBILITY ; VARIANTS ; BREAST ; breast cancer ; BREAST-CANCER ; BRCA1 ; OVARIAN-CANCER ; MUTATION ; genetics ; SNP ; cancer risk ; CARRIERS ; case-control studies ; ESTROGEN-RECEPTOR ; SINGLE ; molecular biology ; case control study ; case-control study ; population-based case-control study ; BRCA2 ; VARIANT ; SINGLE NUCLEOTIDE POLYMORPHISMS ; SNPs ; MUTATION CARRIERS ; ALLELES ; INCREASED RISK ; population-based ; CANCER-RISK ; COMMON VARIANT ; 8Q24 ; NOV ; GENOME-WIDE ASSOCIATION ; GENERAL-POPULATION ; breast cancer risk ; UK ; Genetic ; 33 ; COMMON VARIANTS ; Genome-wide association studies ; BRCA1 and BRCA2
    Abstract: Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 x 10(-4)]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not
    Type of Publication: Journal article published
    PubMed ID: 19656774
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; POPULATION ; RISK ; GENE ; SUSCEPTIBILITY ; VARIANTS ; breast cancer ; ESTROGEN-RECEPTOR ; ALLELES ; LOCUS ; GENOME-WIDE ASSOCIATION ; CONFER SUSCEPTIBILITY ; BRCA2 MUTATION CARRIERS ; 2Q35 ; ESR1 ; GENETIC MODIFIERS
    Abstract: Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [ hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 x 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 x 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women
    Type of Publication: Journal article published
    PubMed ID: 21593217
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CANCER ; CELLS ; RISK ; TUMORS ; FAMILY ; BIOLOGY ; SUSCEPTIBILITY ; BREAST ; BREAST-CANCER ; STEM-CELLS ; MULTIPLE-MYELOMA ; MAMMARY-GLAND ; MUTATION CARRIERS ; ADHERENS JUNCTIONS ; EPITHELIUM ; MISSENSE MUTATIONS ; genetic variation ; MITOTIC SPINDLE ; BRCA1-DEPENDENT UBIQUITINATION ; CENTROSOMAL MICROTUBULE NUCLEATION ; PROGENITOR-CELL FATE
    Abstract: Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.
    Type of Publication: Journal article published
    PubMed ID: 22110403
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: CANCER ; Germany ; PATHWAY ; PATHWAYS ; RISK ; GENE ; GENES ; microarray ; PATIENT ; DNA ; prognosis ; mechanisms ; treatment ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; STAGE ; ADENOMAS ; NUMBER ; AGE ; DNA-REPAIR ; REPAIR ; COLORECTAL-CANCER ; chemotherapy ; case-control studies ; INDIVIDUALS ; DNA repair ; EXCISION-REPAIR ; case-control study ; ASSOCIATIONS ; RE ; VARIANT ; SINGLE NUCLEOTIDE POLYMORPHISMS ; CANDIDATE GENES ; XPD ; case control studies ; INTERVAL ; single-nucleotide ; PRIMER EXTENSION ; XENOBIOTIC METABOLISM ; PREDICTS ; OGG1 ; XRCC3 POLYMORPHISMS
    Abstract: Objectives: We have undertaken a comprehensive study of common polymorphisms in genes of DNA repair, exploring both the risk of developing colorectal cancer and the prognosis of patients. Methods: Subjects from a case-control study (377 cases and 329 controls) designed to assess gene-environment interactions were genotyped by use of an oligonucleotide microarray and the arrayed primer extension technique. Twenty-eight single nucleotide polymorphisms in 15 DNA repair genes were included. The candidate genes belong to different DNA repair pathways: base excision repair (OGG1, LIG3, APEX, POLB, XRCC1, PCNA, and MUTYH), nucleotide excision repair (ERCC1, ERCC2, ERCC4, and ERCC5), double-strand breaks repair (XRCC2, XRCC3, and XRCC9), and reversion repair (MGMT) genes. Results: Polymorphism OGG1 S326C was associated with an increased risk of colorectal cancer [odds ratio (OR), 2.3; 95% confidence interval (95% CI), 1.1-5.0], the risk being higher in younger individuals. A haplotype of ERCC1 was associated with increased risk (OR, 2.3; 95% Cl, 1.0-5.3). POLB P242R was also associated with decreased risk (OR, 0.23; 95% Cl, 0.05-0.99), although the number of variant allele carriers was low. In the univariate analysis, adjusted for age, sex, and Dukes' stage, three polymorphisms were significantly associated with better prognosis. XRCC1 R399Q [hazard ratio (HR), 0.38; 95% Cl, 0.17-0.85], XRCC3 T141M (HR, 0.66; 95% Cl, 0.45-0.97), and MGMT L84F (HR, 0.14; 95% Cl, 0.02-0.99). ERCC1 19007T〉C was associated with worse prognosis (HR, 1.51; 95% Cl, 1.01-2.27). In a multivariate analysis, only XRCC1 R399Q and ERCC1 19007T〉C remained significant. These associations were stronger among patients receiving adjuvant chemotherapy. Conclusions: Although the overall effect of DNA repair genes in colorectal cancer etiology seems limited, their influence in the response to chemotherapy and prognosis may be more relevant. This knowledge may help to clarify the utility of specific adjuvant treatments according to the individual genetic background
    Type of Publication: Journal article published
    PubMed ID: 16609022
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; COMBINATION ; MODEL ; PATHWAY ; RISK ; CARCINOGENESIS ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; single nucleotide polymorphism ; BREAST ; breast cancer ; BREAST-CANCER ; ELEMENT ; PROMOTER ; BRCA1 ; MUTATION ; SNP ; p53 ; cancer risk ; REGION ; GENOTYPES ; MDM2 ; CARRIERS ; BRCA1/2 ; REGULATOR ; TP53 ; SINGLE ; FRAMEWORK ; BRCA2 ; LI-FRAUMENI-SYNDROME ; SNPs ; MUTATION CARRIERS ; GENOTYPE ; GENOTYPE DATA ; cancer research ; CANCER-RISK ; hazard ratio ; CONSORTIUM ; MODIFIERS ; SNP309 ; UK ; INVESTIGATE ; CONFIDENCE ; BRCA1 and BRCA2 ; INS16BP
    Abstract: BACKGROUND: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T 〉 G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. METHODS: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T 〉 G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. RESULTS: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR) = 1.01, 95% confidence interval (CI): 0.93-1.10, P-trend = 0.77; MDM2: HR = 0.96, 95% CI: 0.84-1.09, P-trend = 0.54) or for BRCA2 mutation carriers (TP53: HR = 0.99, 95% CI: 0.87-1.12, P-trend = 0.83; MDM2: HR = 0.98, 95% CI: 0.80-1.21, P-trend = 0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. CONCLUSION: There was no evidence that TP53 Arg72Pro or MDM2 309T 〉 G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. British Journal of Cancer (2009) 101, 1456-1460. doi: 10.1038/sj.bjc.6605279 www.bjcancer.com Published online 25 August 2009 (C) 2009 Cancer Research UK
    Type of Publication: Journal article published
    PubMed ID: 19707196
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; CELLS ; MODELS ; RISK ; GENE ; GENES ; PROTEIN ; PROTEINS ; DNA ; ASSOCIATION ; SUSCEPTIBILITY ; MUTATIONS ; DNA-DAMAGE ; CAENORHABDITIS-ELEGANS ; SUSCEPTIBILITY GENE ; HOMOLOGOUS RECOMBINATION ; ONCOLOGY ; PANCREATIC-CANCER ; C-ELEGANS ; GERM-CELLS ; FANCONI-ANEMIA ; ENGLAND ; BRCA2 MUTATION CARRIERS ; CHROMODOMAIN PROTEIN ; HELICASE BRIP1
    Abstract: Introduction: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. Methods: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. Results: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to g-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, P(trend) = 0.45 and 0.05, P(2df) = 0.51 and 0.14, respectively; and rs10519219, P(trend) = 0.92 and 0.72, P(2df) = 0.76 and 0.07, respectively. Conclusions: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers
    Type of Publication: Journal article published
    PubMed ID: 21466675
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...