Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RISK-FACTORS  (11)
Collection
Keywords
  • 1
    Keywords: CANCER ; EXPRESSION ; carcinoma ; CELL ; Germany ; LUNG ; COMMON ; lung cancer ; LUNG-CANCER ; EXPOSURE ; RISK ; GENE ; GENES ; HYBRIDIZATION ; DNA ; MECHANISM ; primary ; RISK-FACTORS ; mechanisms ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; NO ; AMPLIFICATION ; AGE ; DNA-REPAIR ; REPAIR ; CIGARETTE-SMOKING ; risk factors ; smoking ; PCR ; cancer risk ; DAMAGE ; RISK FACTOR ; REGION ; CARCINOGENS ; adenocarcinoma ; case-control studies ; squamous cell carcinoma ; INDIVIDUALS ; CANCER-RESEARCH ; SMOKERS ; NUCLEOTIDE EXCISION-REPAIR ; CELL CARCINOMA ; case control study ; case-control study ; REGRESSION ; OCCUPATIONAL-EXPOSURE ; CARCINOGEN ; HEAVY ; LUNG ADENOCARCINOMA ; PIGMENTOSUM GROUP-A
    Abstract: Polymorphisms of genes coding for DNA repair can affect lung cancer risk. A common single nucleotide (-4) G-to-A polymorphism was identified previously in the 5' untranslated region of the XPA gene. In a case-control study in European Caucasians, the influence of this polymorphism on primary lung cancer risk overall and according to histologic subtypes was investigated. Four hundred sixty-three lung cancer cases (including 204 adenocarcinoma and 212 squamous cell carcinoma) and 460 tumor-free hospital controls were investigated using PCR amplification and melting point analysis of sequence-specific hybridization probes. Odds ratios (OR) were calculated by multiple logistic regression analysis adjusting for age, gender, smoking habits, and occupational exposure and showed a slightly enhanced risk for all lung cancer cases as well as for squamous cell carcinoma and adenocarcinoma cases. Gene-environment interactions were analyzed with respect to smoking and occupational exposure. A nearly 3-fold increased risk for adenocarcinoma associated with the XPA AA genotype was observed for occupationally exposed individuals (OR, 2.95; 95% confidence interval, 1.42-6.14) and for heavy smokers (OR, 2.52; 95% confidence interval, 1.17-5.42). No genotype-dependent increase in OR was found for nonexposed individuals or those smoking 〈20 pack-years. The significant effect of the XPA polymorphism in heavy smokers and occupationally exposed individuals suggests an important gene-environment interaction for the XPA gene. The underlying mechanisms as to why AA homozygotes are predisposed to lung adenocarcinoma and which specific carcinogens are involved remains to be determined
    Type of Publication: Journal article published
    PubMed ID: 15598786
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: APOPTOSIS ; CANCER ; tumor ; carcinoma ; CELL ; Germany ; LUNG ; lung cancer ; LUNG-CANCER ; SYSTEM ; EXPOSURE ; RISK ; GENE ; GENES ; PATIENT ; RISK-FACTORS ; cell cycle ; CELL-CYCLE ; CYCLE ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; VARIANTS ; BREAST-CANCER ; risk factors ; smoking ; p53 ; cancer risk ; MUTATIONS ; TRANSFORMATION ; SQUAMOUS-CELL CARCINOMA ; adenocarcinoma ; case-control studies ; squamous cell carcinoma ; GASTRIC-CANCER ; DNA repair ; DNA-REPAIR GENES ; molecular epidemiology ; ONCOLOGY ; case-control study ; REGRESSION ; RE ; TUMOR-SUPPRESSOR ; VARIANT ; INCREASE ; CARCINOGEN ; case control studies ; analysis ; SUPPRESSOR ; GENOTYPE ; adenocarcinoma of the lung ; HISTOLOGY ; RISK-FACTOR ; CANCER-RISK ; PROLINE ; SQUAMOUS-CELL ; INCREASES ; cell cycle control ; CODON-72 ; P53 POLYMORPHISM
    Abstract: Alterations in cell cycle regulation and apoptosis leading to malignant transformation could be caused by common genetic variants in tumor suppressor genes. The effects of the TP53 polymorphism Arg72Pro on lung cancer risk have been investigated in numerous studies with, however, conflicting results. In many studies, important risk modifiers such as smoking or tumor histology were not taken into account. We therefore investigated the combined effects of polymorphisms in TP53 (Arg72Pro) and p21/CDKN1A (Ser31Arg) and smoking on lung cancer risk. Our case-control study consisted of 405 patients with lung cancer, mainly squamous-cell carcinoma (185) and adenocarcinoma (177) and 404 unmatched tumor-free hospital controls. Multivariate regression analysis showed a moderate but statistically significant risk of lung cancer overall. and especially of squamous-cell carcinoma (OR, 1.65; CI, 1.10-2.47) for TP53 72Pro allele carriers. The risk was markedly increased in heavy smokers (〉 20 pack-years) with squamous-cell carcinoma (OR, 2.80 in patients homozygous for 72Pro; CI, 1.19-6.58), but not in tight smokers (〈= 20 pack-years). The results for the p21 Ser31Arg polymorphism suggested that 31Ser is a moderate-risk allele for squamous-cell carcinoma. Analysis of the combined effects of the two polymorphisms revealed a higher OR for TP53 72Pro carriers homozygous for p21 31Ser than for 72Pro carriers in general; this effect being most pronounced in heavy smokers with squamous-cell carcinoma (OR, 3.84; CI, 1.46-10.1). Our data indicate that the TP53 Arg72Pro polymorphism increases the risk for squamous-cell carcinoma mainly in heavy smokers. The observed interaction with smoking is biologically plausible as, for the 72Pro p53 variant, decreased apoptosis and extended G1 cell cycle arrest is reported after carcinogen exposure. Nevertheless, confirmation by further molecular and epidemiological studies is warranted. (c) 2006 Elsevier Ireland Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 17059853
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER ; EXPRESSION ; tumor ; BLOOD ; CELL LUNG-CANCER ; Germany ; PROSTATE ; THERAPY ; SUPPORT ; RISK ; DISTINCT ; GENE ; GENE-EXPRESSION ; GENES ; RNA ; transcription ; PATIENT ; DNA ; MESSENGER-RNA ; MARKER ; IMPACT ; primary ; prognosis ; RISK-FACTORS ; CARCINOGENESIS ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; VARIANTS ; lifestyle ; DIFFERENCE ; PLASMA ; REPAIR ; risk factors ; COLORECTAL-CANCER ; prostate cancer ; PROSTATE-CANCER ; MARKERS ; LYMPHOCYTES ; MDM2 ; CANCER-PATIENTS ; POLYMERASE-CHAIN-REACTION ; PREDICTION ; CANCER PATIENTS ; PERIPHERAL-BLOOD ; POLYMERASE CHAIN-REACTION ; NUCLEOTIDE EXCISION-REPAIR ; DNA repair ; TP53 ; BETA-CAROTENE ; molecular ; CHAIN ; ONCOLOGY ; REGRESSION ; RE ; TUMOR-SUPPRESSOR ; VARIANT ; THERAPIES ; mRNA ; LEVEL ; SUPPRESSOR ; GENOTYPE ; HAPLOTYPE ; OXIDATIVE DNA-DAMAGE ; RISK-FACTOR ; ENGLAND ; COEFFICIENTS ; quantitative ; outcome ; VALUES ; tumor suppressor ; MDM2 SNP309 ; genetic variants ; treatment outcome
    Abstract: Both genetic variants and messenger RNA (mRNA) expression of DNA repair and tumor suppressor genes have been investigated as molecular markers for therapy outcome. However, the phenotypic impact of genetic variants often remained unclear, thus the rationale of their use in risk prediction may be limited. We therefore analyzed genetic variants together with anthropometric and lifestyle factors to see how these affect mRNA levels of ERCC1, MDM2 and TP53 in primary blood lymphocytes. mRNA expression was measured in 376 prostate cancer patients by quantitative real-time polymerase chain reaction after reverse transcription, and ERCC1 rs11615 T 〉 C, ERCC1 rs3212986 C 〉 A, MDM2 rs2279744 T 〉 G and TP53 rs17878362 (p53PIN3) polymorphisms were determined. Considerable interindividual differences in mRNA expression were found (coefficients of variation: ERCC1, 45%; MDM2, 43% and TP53, 35%). ERCC1 expression was positively correlated with plasma levels of beta-carotene (P = 0.03) and negatively correlated with canthaxanthin (P = 0.02) and lutein (P = 0.02). Overall, the polymorphisms affected mRNA expression only weakly. Carriers of a distinct ERCC1 haplotype (CC) showed, however, significantly lower expression values than non-carriers (P = 0.001). Applying logistic regression, we found that CC haplotype carriers had a 1.69-fold increased odds ratio (95% confidence interval: 1.06-2.71) for reduced ERCC1 mRNA levels. This low ERCC1 expression might be associated with reduced DNA repair and better therapy response. In summary, the association we have found between ERCC1 genotype and mRNA expression supports recent clinical observations that genetic variation in ERCC1 can affect treatment outcome and prognosis. Our study further revealed a modulating effect by nutritional factors
    Type of Publication: Journal article published
    PubMed ID: 18332046
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: brain ; CANCER ; IRRADIATION ; radiotherapy ; tumor ; Germany ; PROSTATE ; THERAPY ; TOXICITY ; COHORT ; RISK ; GENE ; GENES ; TISSUE ; TUMORS ; validation ; radiation ; PATIENT ; MARKER ; RISK-FACTORS ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; BREAST ; MUTATION ; prostate cancer ; PROSTATE-CANCER ; MARKERS ; cancer risk ; RISK FACTOR ; HEAD ; NETHERLANDS ; NORMAL TISSUE ; NECK-CANCER ; brain tumor ; BRAIN-TUMORS ; head and neck cancer ; THERAPIES ; brain tumors ; RISK-FACTOR ; CANCERS ; CANCER-RISK ; GENOME-WIDE ASSOCIATION ; Genetic ; Genome-wide association studies ; cellular response ; CELLULAR-RESPONSE ; BRAIN-TUMOR
    Abstract: Radiotherapy is an important weapon in the treatment of cancer, but adverse reactions developing in the co-irradiated normal tissue can be a threat for patients. Early reactions might disturb the usual application schedule and limit the radiation dose. Late appearing and degenerative reactions might reduce or destroy normal tissue function. Genetic markers conferring the ability to identify hyper-sensitive patients in advance would considerably improve therapy. Association studies on genetic variation and occurrence of side effects should help to identify such markers. This survey includes published studies and novel data from our own laboratory. It illustrates the presence of candidate polymorphisms in genes involved in the cellular response to irradiation which could be used as predictive markers for radiosensitivity in breast or prostate cancer patients. For other tumor types such as head and neck cancers or brain tumors, the available data are much more limited. In any case, further validation of these markers is needed in large patient cohorts with systematically recorded data on side effects and patient characteristics. Genetic variation contributing to radiosensitivity should be screened on a broader basis using newly developed, more comprehensive approaches such as genome-wide association studies
    Type of Publication: Journal article published
    PubMed ID: 19022265
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: CANCER ; CELLS ; EXPRESSION ; IN-VITRO ; IRRADIATION ; radiotherapy ; Germany ; THERAPY ; NEW-YORK ; RISK ; SURGERY ; radiation ; PATIENT ; DNA ; DONOR ; RISK-FACTORS ; INDUCTION ; SKIN ; fibroblasts ; SUSCEPTIBILITY ; BREAST ; breast cancer ; BREAST-CANCER ; RADIATION-THERAPY ; ASSAY ; DNA-REPAIR ; REPAIR ; REPRODUCIBILITY ; risk factors ; cancer risk ; COMET ASSAY ; DAMAGE ; LYMPHOCYTES ; DNA repair ; radiation sensitivity ; alkaline single-cell microgel electrophoresis assay ; CELLULAR RADIOSENSITIVITY ; CHROMOSOMAL RADIOSENSITIVITY ; DNA repair capacity ; DOUBLE-STRAND BREAKS ; IN-VITRO RADIOSENSITIVITY ; NORMAL-TISSUE RADIOSENSITIVITY ; PERIPHERAL-BLOOD LYMPHOCYTES ; radiation effects ; radiosensitivity ; TELANGIECTASIA
    Abstract: Purpose: Repair of radiation-induced DNA damage plays a critical role for both the susceptibility of patients to side effects after radiotherapy and their subsequent cancer risk. The study objective was to evaluate whether DNA repair data determined in vitro are correlated with the occurrence of acute side effects during radiotherapy. Methods and Materials: Breast cancer patients receiving radiation therapy after a breast- conserving surgery were recruited in a prospective epidemiologic study. As an indicator for clinical radiosensitivity, adverse reactions of the skin were recorded. Cryo-preserved lymphocytes from 113 study participants were gamma-irradiated with 5 Gy in vitro and analyzed using the alkaline comet assay. Reproducibility of the assay was determined by repeated analysis (n = 26) of cells from a healthy donor. A coefficient of variation of 0.3 was calculated. Results: The various parameters determined to characterize the individual DNA repair capacity showed large differences between patients. Eleven patients were identified with considerably enhanced DNA damage induction, and 7 patients exhibited severely reduced DNA repair capacity after 15 and 30 min. Six patients were considered as clinically radiosensitive, indicated by moist desquamation of the skin after a total radiation dose of about 50 Gy. Conclusions: Using the alkaline comet assay as described here, breast cancer patients were identified showing abnormal cellular radiation effects, but this repair deficiency corresponded only at a very limited extent to the acute radiation sensitivity of the skin. Because impaired DNA repair could be involved in the development of late irradiation effects, individuals exhibiting severely reduced DNA repair capacity should be followed for the development of late clinical symptoms. (C) 2003 Elsevier Science Inc
    Type of Publication: Journal article published
    PubMed ID: 12654430
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CANCER ; EXPRESSION ; IN-VITRO ; IONIZING-RADIATION ; radiotherapy ; BLOOD ; Germany ; THERAPY ; TOXICITY ; RISK ; GENE ; GENES ; transcription ; radiation ; PATIENT ; RESPONSES ; DNA ; RISK-FACTORS ; PATTERNS ; DNA-REPAIR ; REPAIR ; risk factors ; prostate cancer ; PROSTATE-CANCER ; PCR ; DAMAGE ; LYMPHOCYTES ; PROBES ; DNA-DAMAGE ; CANCER-PATIENTS ; RT-PCR ; INTENSITY-MODULATED RADIOTHERAPY ; sensitivity ; CANCER PATIENTS ; PERIPHERAL-BLOOD ; DNA repair ; CONSTITUTIVE EXPRESSION ; NORMAL-TISSUE RADIOSENSITIVITY ; PERIPHERAL-BLOOD LYMPHOCYTES ; radiosensitivity ; CLUSTER ; BRCA2 ; GRADE ; CLUSTER-ANALYSIS ; LEVEL ; DNA damage ; cluster analysis ; PROFILES ; EXPRESSION PATTERNS ; CRITERIA ; HUMAN-CELLS ; prospective ; GAMMA-IRRADIATION ; RISK-FACTOR ; SKIN REACTIONS ; peripheral blood ; GENOTOXIC STRESS ; gene expression profiles ; radio-resistance
    Abstract: Purpose: Repair of radiation-induced DNA damage is believed to play a critical role in the development of adverse reactions in radiotherapy patients. Constitutive mRNA expression of repair genes was investigated in such patients to analyze whether expression patterns are predictive for therapy-related acute side effects. Materials and methods: Prostate cancer patients (n = 406) receiving intensity-modulated radiotherapy were recruited in a prospective epidemiological study. Adverse effects were monitored during therapy using common toxicity criteria. For expression analyses, samples from 58 patients were selected according to their observed grade of clinical side effects to radiotherapy. Expression profiles were generated from peripheral blood lymphocytes using customized cDNA-arrays which carried probes for 143 DNA repair or repair-related genes. In addition, expression of selected genes was confirmed by quantitative real-time reverse transcription PCR (RT-PCR). Constitutive mRNA expression profiles were analyzed for predicting acute clinical radiosensitivity or radio-resistance. Results: Cluster analysis identified 19 differentially expressed genes. Many of these genes are involved in DNA double strand break repair. Expression levels of these genes differed up to 7-fold from the mean of all patients whereas expression levels of housekeeping genes varied only up to 2-fold. High expression of the identified genes was associated with a lack of clinical radiation sensitivity thus indicating radio-resistance. Conclusions: Constitutive expression of DNA repair-related genes may affect the development of acute side effects in radiotherapy patients, and high expression levels of these genes seem to support protection from adverse reactions
    Type of Publication: Journal article published
    PubMed ID: 16966187
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Journal of Urology 175 (1), 112-112 
    Keywords: Germany ; RISK ; RISK-FACTORS ; risk factors ; RE
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; CELLS ; EXPRESSION ; IN-VITRO ; IONIZING-RADIATION ; radiotherapy ; CELL ; Germany ; PROSTATE ; TOXICITY ; VITRO ; COMMON ; RISK ; GENE ; GENES ; transcription ; radiation ; TIME ; PATIENT ; DNA ; RISK-FACTORS ; INDUCTION ; STRESS ; DNA-REPAIR ; REPAIR ; risk factors ; smoking ; prostate cancer ; PROSTATE-CANCER ; MODULATION ; PCR ; DAMAGE ; LYMPHOCYTES ; DNA-DAMAGE ; CANCER-PATIENTS ; side effects ; CANCER PATIENTS ; real-time PCR ; NUCLEOTIDE EXCISION-REPAIR ; DNA repair ; NORMAL-TISSUE RADIOSENSITIVITY ; PERIPHERAL-BLOOD LYMPHOCYTES ; radiosensitivity ; ONCOLOGY ; GRADE ; quantitative RT-PCR ; REAL-TIME ; development ; ionizing radiation ; DAMAGE RECOGNITION ; LEVEL ; biomarker ; INTERVAL ; analysis ; CRITERIA ; BREAST-CANCER PATIENTS ; USA ; HUMAN-CELLS ; DNA damage response ; INCREASED RISK ; NEVER SMOKERS ; odds ratio ; RISK-FACTOR ; PREDICT ; quantitative ; REPAIR GENES ; LYMPHOBLASTOID-CELLS ; GROUP-C PROTEIN
    Abstract: Repair of radiation-induced DNA damage is believed to play a critical role in developing adverse reactions during radiotherapy. Ionizing radiation induces transcription of several DNA repair genes including XPC as a part of the p53-transmitted stress response. XPC gene induction was measured to analyze whether it predicts occurrence of therapy-related acute side effects. Prostate cancer patients (n = 406) receiving radiotherapy were monitored for development of acute adverse effects using common toxicity criteria. For gene induction analysis, lymphocytes from 99 patients were selected according to their observed grade of clinical side effects. Cells were irradiated in vitro with 5 Gy and analyzed after 4 hr for XPC gene induction using reverse transcription and quantitative real-time PCR. Analysis of modulation of XPC induction by personal, clinical or lifestyle factors was included. Inter-individual induction of XPC expression by ionizing radiation varied up to 20-fold (0.29-5.77) and was significantly higher in current or exsmokers than in never-smokers (p value: 0.008). Patients with XPC induction above the 90th percentile compared to those with lower induction levels were at increased risk of suffering from adverse reactions during radiotherapy (odds ratio 5.3, 95% confidence interval 1.2-24.5; adjusted for smoking). In summary, XPC mRNA levels induced by ionizing radiation were shown for the first time to be strongly affected by smoking and to be associated with an approximately 5-fold increased risk for developing acute side effects of radiotherapy. The predictive value of DNA damage-induced XPC levels as a possible biomarker for radiosensitivity has to be further investigated. (c) 2007 Wiley-Liss, Inc
    Type of Publication: Journal article published
    PubMed ID: 17657713
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; carcinoma ; CELL ; COMBINATION ; Germany ; LUNG ; PATHWAY ; INFORMATION ; lung cancer ; LUNG-CANCER ; EXPOSURE ; RISK ; GENE ; GENES ; PATIENT ; DNA ; RISK-FACTORS ; recombination ; polymorphism ; POLYMORPHISMS ; SUSCEPTIBILITY ; VARIANTS ; IDENTIFICATION ; HUMANS ; AGE ; REPAIR ; risk factors ; smoking ; cancer risk ; DAMAGE ; RISK FACTOR ; HIGH-RISK ; ADDUCTS ; adenocarcinoma ; case-control studies ; squamous cell carcinoma ; INDIVIDUALS ; sensitivity ; EXCISION-REPAIR ; ACID SUBSTITUTION VARIANTS ; non-small cell lung cancer ; CELL CARCINOMA ; case-control study ; VARIANT ; OCCUPATIONAL-EXPOSURE ; CAPACITY ; ALLELE ; SINGLE NUCLEOTIDE POLYMORPHISMS ; XRCC1 POLYMORPHISMS ; XPD ; XRCC1
    Abstract: Several polymorphisms in DNA repair genes have been reported to be associated with lung cancer risk including XPA (-4G/A), XPD (Lys751Gln and Asp312Asn), XRCC1 (Arg399Gln), APE1 (Asp148Glu) and XRCC3 (Thr241Met). As there is little information on the combined effects of these variants, polymorphisms were analyzed in a case-control study including 463 lung cancer cases [among them 204 adenocarcinoma and 212 squamous cell carcinoma (SCC)] and 460 tumor-free hospital controls. Odds ratios (OR) adjusted for age, gender, smoking and occupational exposure were calculated for the variants alone and combinations thereof. For homozygous individuals carrying the Glu variant of APE1, a protective effect was found (OR = 0.77, CI = 0.51-1.16). Individuals homozygous for the variants XPA (-4A) (OR = 1.53, CI = 0.94-2.5), XPD 751Gln (OR = 1.39, CI = 0.90-2.14) or XRCC3 241Met (OR = 1.29, CI = 0.85-1.98) showed a slightly higher risk for lung cancer overall. In the subgroup of adenocarcinoma cases, adjusted ORs were increased for individuals homozygous for XPA (-4A) (OR = 1.62, CI = 0.91-2.88) and XRCC3 241Met (OR = 1.65; CI = 0.99-2.75). When analyzing the combined effects of variant alleles, 54 patients and controls were identified that were homozygous for two or three of the potential risk alleles [i.e. the variants in nucleotide excision repair, XPA (-4A) and XPD 751Gln, and in homologous recombination, XRCC3-241Met]. ORs were significantly increased when all patients (OR = 2.37; CI = 1.26-4.48), patients with SCC (OR = 2.83; CI = 1.17-6.85) and with adenocarcinoma (OR = 3.05; CI = 1.49-6.23) were analyzed. Combinations of polymorphisms in genes involved in the same repair pathway (XPA + XPD or XRCC1 + APE1) affected lung cancer risk only in patients with SCC. These results indicate that lung cancer risk is only moderately increased by single DNA repair gene variants investigated but it is considerably enhanced by specific combinations of variant alleles. Analyses of additional DNA repair gene interactions in larger population-based studies are warranted for identification of high-risk subjects
    Type of Publication: Journal article published
    PubMed ID: 15333465
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: CANCER ; Germany ; IN-VIVO ; COMMON ; LUNG-CANCER ; EXPOSURE ; POPULATION ; RISK ; GENE ; GENES ; HYBRIDIZATION ; COMPLEX ; COMPLEXES ; DNA ; RISK-FACTORS ; GENETIC POLYMORPHISMS ; mechanisms ; SEQUENCE ; ASSOCIATION ; polymorphism ; POLYMORPHISMS ; single nucleotide polymorphism ; SUSCEPTIBILITY ; BREAST-CANCER ; PROBE ; AGE ; DNA-REPAIR ; REPAIR ; SNP ; smoking ; BLADDER-CANCER ; cancer risk ; DAMAGE ; RISK FACTOR ; PROBES ; DNA-DAMAGE ; SQUAMOUS-CELL CARCINOMA ; gene-environment interaction ; genetic polymorphism ; case-control studies ; ALCOHOL ; ALCOHOL-CONSUMPTION ; CONSUMPTION ; EXCISION-REPAIR ; SINGLE ; case control study ; case-control study ; population-based case-control study ; REGRESSION ; SINGLE NUCLEOTIDE POLYMORPHISMS ; SNPs ; CANCER SUSCEPTIBILITY ; ALLELES ; LEVEL ; DNA damage ; HAPLOTYPE ; GENDER ; USA ; RISK-FACTOR ; population-based ; CANCER-RISK ; EXPOSURES ; LOGISTIC-REGRESSION ; REPAIR GENES ; ACETALDEHYDE ; 3 ; ENVIRONMENT INTERACTION ; ERCC2 ; ERCC4 ; Genetic ; genetic variation
    Abstract: Laryngeal cancer is known to be associated with smoking and high alcohol consumption. Nucleotide excision repair (NER) plays a key role in repairing DNA damage induced by these exposures and might affect laryngeal cancer susceptibility. In a population-based case-control study including 248 cases and 647 controls, the association of laryngeal cancer with 14 single nucleotide polymorphisms (SNPs) in 8 NER genes (XPC, XPA, ERCC1, ERCC2, ERCC4, ERCC5, ERCC6 and RAD23B) was analyzed with respect to smoking and alcohol exposure. For genotyping, sequence specific hybridization probes were used. Data were evaluated by conditional logistic regression analysis, stratified for age and gender, and adjusted for smoking, alcohol consumption and education. Pro-carriers of ERCC6 Arg1230Pro showed a decreased risk for laryngeal cancer (OR = 0.53, 95% CI 0.34-0.85), strongest in heavy smokers and high alcohol consumers. ERCC5 Asp1104His was associated with risk in heavy smokers (OR = 1.70 , 95% CI 1.1-2.5). Val-carriers of RAD23B Ala249Val had an increased cancer risk in heavy smokers (OR = 1.6, 95% CI 1.1-2.5) and high alcohol consumers (OR = 2.0, 95% CI 1.1-3.4). The combined effect of smoking and alcohol intake affected risk, at high exposure level, for ERCC6 1230Pro carriers (OR = 0.47, 95% CI 0.22-0.98) and RAD23B 249Val carriers (OR = 2.6, 95% CI 1.3-4.9). When tested for gene-gene interaction, presence of 3 risk alleles in the XPC-RAD23B complex increased the risk 2.1-fold. SNPs in the other genes did not show a significant association with laryngeal cancer risk. We conclude that common genetic variations in NER genes can significantly modify laryngeal cancer risk. (C) 2009 UICC
    Type of Publication: Journal article published
    PubMed ID: 19444904
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...