Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 1615-6102
    Keywords: Flagellar apparatus ; Green algae ; Rhizoplast ; Rootlets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the flagellar apparatus of the marine quadriflagellate green algaTetraselmis subcordiformis is described in detail. Special consideration is given to the functional significance of the contractile rhizoplast and also to a complex structure which anchors the flagellar apparatus to the cell membrane and theca. The flagellar apparatus lies at the base of a deep apical depression. Four basal bodies lie in a zigzag row with their long axes nearly parallel. Outer adjacent pairs of basal bodies are structurally linked by a Z-shaped, ribbon-like structure. A striated fiber (transfiber) connects each outer basal body with the inner basal body of the opposite, mirror image pair. A complex system of four laminated oval discs (rhizanchora), microtubule rootlets and fibrous material anchor the flagellar apparatus and rhizoplasts to the plasma membrane and theca. A 4-2-4-2 arrangement of microtubule rootlets is present. Rhizoplasts, which are contractile organelles, branch into five distinct arms and associate with the near outer basal body and each of the four rhizanchora. Rhizoplast contraction is thought to be linked to flagellar activity and may act to alter the direction of motion of the cell.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-04
    Description: Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum. Despite decades of research, the distinct biology of these parasites has made it challenging to establish high-throughput genetic approaches to identify and prioritize therapeutic targets. Using transposon mutagenesis of P. falciparum in an approach that exploited its AT-rich genome, we generated more than 38,000 mutants, saturating the genome and defining mutability and fitness costs for over 87% of genes. Of 5399 genes, our study defined 2680 genes as essential for optimal growth of asexual blood stages in vitro. These essential genes are associated with drug resistance, represent leading vaccine candidates, and include approximately 1000 Plasmodium -conserved genes of unknown function. We validated this approach by testing proteasome pathways for individual mutants associated with artemisinin sensitivity.
    Keywords: Microbiology, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...