Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sulfate  (3)
  • Dicarboxylate transport  (2)
  • Electron-attracting groups  (2)
  • 1
    ISSN: 1432-2013
    Keywords: Electron-attracting groups ; Electron-donating groups ; Hydrophobicity ; Amiloride ; Cimetidine ; N-methyl-4-phenylpyridinium (MPP+)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to evaluate whether N-containing substrates interact with the organic “anion” (p-aminohippurate, PAH) or only with the organic “cation” (N 1-methylnicotinamide, NMeN) transport system or with both, the stop-flow peritubular capillary microperfusion method was applied in the rat kidney in situ and the apparent K i values of several classes or organic substrate against contraluminal NMeN and PAH transport were determined. Organic “anion” and organic “cation” transport are in inverted commas because neither transporter sees the degree of ionization in bulk solution, and they also accept nonionizable substrates [Ullrich KJ, Rumrich G (1992) Pflügers Arch 421:286–288]. Amines must be sufficiently hydrophobic (phenylethylamine, piperidine, piperazine) in order to interact with NMeN transport. Additional Cl, Br, NO2 or other electronegative groups render them inhibitory towards PAH transport also. Such bisubstrate amines were identified as follows: metoclopramide, bromopride, diphenhydramine, bromodiphenhydramine, verapamil, citalopram, ketamine, mefloquine, ipsapirone, buspirone, trazodone, H7 and trifluoperazine. Imidazole analogues interact with both transporters if they bear sufficiently hydrophobic alkyl or aryl groups or electronegative sidegroups. Bisubstrate imidazole analogues are tinidazole, pilocarpine, clonidine, azidoclonidine and cimetidine. Pyridines and thiazoles interact with the NMeN transporter if they have an additional ring-attached NH2 group. Again with an additional Cl, Br, or NO2 group the aminopyridines and aminothiazoles also become inhibitors for the PAH transporter. Amongst the guanidines only substances with several electronegative side-groups such as guanfacine, amiloride, benzylamiloride and ranitidine, interact with both transporters. Amongst the phenylhydrazines only 4-bromophenylhydrazine interacts with the NMeN transporter and 4-nitrophenylhydrazine with both transporters. Quinoline (isoquinoline) and its amino and hydroxy analogues interact with both transporters, their pKa values correlate directly with the affinity to the NMeN transporter and reciprocally with their affinity to the PAH transporter. In experiments with labelled substrates only the sufficiently hydrophilic cimetidine, amiloride and ranitidine show a saturable transport, which can be inhibited by probenecid (apalcillin) and tetraethylammonium in an additive manner. The highly hydrophobic substrates verapamil, citalopram, imipramine, diltiazem and clonidine enter the cell very fast in an unsaturable and uninhibitable manner, apparently in the undissociated form, since N-methyl-4-phenylpyridinium, which — disregarding its ionization — is similarly hydrophobic, shows a transport behaviour similar to that of tetraethylammonium [Ullrich et al. (1991) Pflügers Arch 419:84–92]. Ethidium bromide and dimidium bromide, which have a permanent cationic quaternary nitrogen and two sufficiently electronegative NH2 groups, also interact with both transporters. The data indicate that a molecule qualifies as a bisubstrate if it carries both the essentials for organic anion (PAH) transport: hydrophobicity, sufficient acidity or electron-attracting O, OH, Cl, Br, NO2 groups, plus the essentials for organic cation transport: hydrophobicity, sufficient basicity or electron-donating N-containing groups. The nitrogen atoms in the N-containing molecules quinoline (pK a 4.9), isoquinoline (pK a 5.4) and benzylpyridine (pK a 5.13) are of such low basicity that they apparently can also interact with the PAH transporter. Apparent hydrophobicity (disregarding ionization) determines interaction with the transporters, while real hydrophobicity [log (octanol distribution values)] determines the diffusion through the lipid bilayer of the cell membrane.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Electron-attracting groups ; Electron-donating groups ; Hydrophobicity ; Corticosteroids ; Androstene analogues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to test what chemical structure is required for a substrate to interact not only with the contraluminal organic anion (p-aminohippurate, PAH) transporter, but also with the organic cation (N 1-methylnicotinamide, NMeN, or tetraethylammonium, TEA) transporter, the stop-flow peritubular capillary perfusion method was applied and app. K i values were evaluated. Zwitterionic hydrophobic dipeptides not only interact with PAH but also with NMeN transport although with lower inhibitory potency (K i,PAH=0.2–1.4; K i,NMeN 614 mmol/l). Amongst the zwitterionic cephalosporins, which all inhibit PAH transport, the amino cephalosporin analogue cefadroxil was identified to interact also with NMeN transport (K i,PAH = 3.0, K i,NMeN=11.2 mmol/l). All Zwitterionic naphthyridine and oxochinoline gyrase inhibitors tested inhibit NMeN transport with app. K i,NMeN values between 1.2 mmol/l and 4.7 mmol/l; the naphthyridine analogues show a good inhibitory potency against PAH transport (K i,PAH ≈ 0.4 mmol/l), the piperazine-containing quinolone analogues have a moderate inhibitory potency (K i,PAH=1.1–2.5 mmol/l) and the piperazine-containing pipemidic acid did not inhibit PAH transport at all. Zwitterionic thiazolidine carboxylate phosphamides also interact with both transporters (app. K i,PAH ≈ 3.0; app. K i,NMeN ≈ 18.0 mmol/l). The nonionizable oxo- and hydroxy-group-containing corticosteroid hormones also interact with the two transporters. (a) An OH group in position 21 is necessary for interaction with the PAH transporter, but not for interaction with the TEA transporter. (b) Introduction of an OH group in position 17α abolishes interaction with the TEA transporter, but has different effects with the PAH transporter. (c) Introduction of an OH group in position 6 abolishes interaction with both, the PAH and the TEA transporter. (d) A change of the side-group in position 11 of corticosterone from -OH to -H to=O enhances interaction with the PAH transporter but has no effect on the interaction with the TEA transporter. Nonionizable 4- or 5-androstene analogues inhibit both transporters with app. K i between 0.16 mmol/l and 0.64 mmol/l, if the steroids are soluble in a concentration greater than 1 mmol/l. Nonionizable oxazaphosphorins with more than one chloroethyl group interact with the PAH transporter with app. K i between 0.84mmol/l and 4.9mmol/l and with the NMeN transporter with app. K i between 3.2 mmol/l and 18.7 mmol/l. Thus a substrate interacts with both transporters if it is sufficiently hydrophobic, possesses acidic and/or electron-attracting plus basic and/or electron-donating groups, or possesses several electron-attracting nonionizable groups (O, OH, Cl). A certain spatial arrangement of the interacting groups seems to be necessary.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Dicarboxylate transport ; Sulfate transport ; Benzoyl compounds ; Phenoxy compounds ; Valproate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity of the contraluminal para-aminohippurate (PAH) transport system, the inhibitory potency of monocarboxylates on the3H-PAH influx from the interstitium into cortical tubular cells in situ has been determined. The following was found: if a homologous series of fatty acids with increasing chain length is tested, inhibition of contraluminal PAH influx is first seen with valerate (app.K i 1.4 mmol/l), increasing up to nonanoate (app.K i 0.06 mmol/l) and remaining in this range up to duodecanoate, the last compound of this series which is sufficiently water-soluble. Similarly, the inhibitory potency of aromatic monocarboxylates increases with increasing hydrophobicity. If the fatty acids are esterified, their inhibitory potency is lost. If they are transformed to the respective aldehydes their inhibitory potency is preserved at a reduced degree. Introduction of a hydrophobic methyl-, ethyl-, or propyl-group increases the inhibitory potency. A β-, but not an α-oxo-group augments the inhibitory potency of phenylpropionate analogs, an OH group diminishes it, and a NH2 group abolishes it. Among phenyl-fatty acids an increase in affinity is observed from phenyl- 〈 benzoylamine-〈 phenoxy- 〈 benzoyl-acetate and-propionate. All monocarboxylate compounds, so far tested, do not inhibit contraluminal sulfate and Na+/succinate influx. The data indicate that the PAH transporter interacts with monocarboxylates and also with aldehydes which have a hydrophobic moiety. An additional oxo-group facilitates the interaction. Thus, the benzoyl compounds show the highest affinity observed.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Oxalate ; Succinate ; Glutarate ; 2-Oxoglutarate ; Citrate ; Sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for contraluminal para-aminohippurate (PAH) transport, the inhibitory potency of aliphatic dicarboxylates on3H-PAH influx, as well as the inhibitory effect on35SO 4 2− - and3H-succinate influx, from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1. Testing a homologous series of dicarboxylates-ranging from the 2 C oxalate to the 10 C sebacate — PAH transport was inhibited by succinate (app.K i 1.35 mmol/l), and all longer dicarboxylates, with high potency (app.K i 0.05–0.35 mmol/l). Sulfate transport was inhibited only by oxalate (app.K i 1.1 mmol/l), while dicarboxylate transport was inhibited by succinate, glutarate, adipate and pimelate with decreasing potency (app.K i 0.04, 0.24, 0.91, 4.0 mmol/l, respectively). 2. PAH transport was inhibited by succinate and glutarate with high potency (app.K i 1.35 and 0.05 mmol/l), by the correspondent monomethylester to a lesser extent (app.K i 1.7 and 0.74 mmol/l), but not by the dimethylester. On the other hand, the semialdehyde of succinate with aK i-value of 1.2 mmol/l, had the same inhibitory potency as succinate itself, while the dialdehyde of glutarate (app.K i 1.4 mmol/l) was much less potent as glutarate. 3. Introduction of an oxo-, methyl- or sulfhydroxylgroup onto the 2-position of succinate, or of an oxo-group onto the 2-position of glutarate moderately augmented the inhibitory potency against PAH-uptake. However, introduction of a 2-hydroxy group onto succinate or glutarate in thel-position reduced the inhibitory potency more than in thed-position. Introduction of two methyl-, sulfhydryl- or hydroxyl-groups in the 2–3-position of succinate reduced or abolished its inhibitory potency. The introduction of a 2-amino group onto succinate or glutarate abolished its effect on PAH transport. However, N-acetylation or N-benzoylation led to a restitution in inhibitory potency. 4. The trans-isomers fumarate and mesaconate inhibited PAH- and methylsuccinate transport, while the cis-isomers maleate and citraconate did so to a lesser extent or not at all. The effect was reversed with the tricarboxylic aconitates, because cis-aconitate bears a CH2-extended COOH-group in trans-position and trans-aconitate in cis-position. The data indicate that there exist three different anion transport systems at the contraluminal cell side of the proximal renal tubule: 1. a sulfate-oxalate transporter, 2. a sodium-dependent dicarboxylate transporter, and 3. a paraaminohippurate transporter. The PAH transport system accepts dicarboxylates with chain length higher than 7.5 Å (=distance between the terminal oxygen atoms), while the dicarboxylate transport interacts with dicarboxylates with a chain length between 6.5 and 10 Å. Both transport systems prefer the transconfiguration. The effect of side groups on the interaction of dicarboxylates with the PAH-transport system is due mainly to hydrophobicity and electron configuration.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Organic anion transport ; Sulfate transport ; Dicarboxylate transport ; Phenolate transport ; Salicylate transport ; Cinnamate transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificities of the contraluminal anion transport systems, the inhibitory potency of substituted benzene analogs on influx of [3H]PAH, [14C]succinate, and [35S]sulfate from the interstitium into cortical tubular cells has been determined in situ: (1) Contraluminal [3H]PAH influx is moderately inhibited by benzene-carboxylate and benzene-sulfonate, and strongly by benzene-dicarboxylates,-disulfonates and carboxy-benzene-sulfonates, if the substituents are located at positions 1 and 3 or 1 and 4. The affinity of the PAH transporter to polysubstituted benzoates increases with increasing hydrophobicity, decreasing electron density at the carboxyl group and decreasing pKa. Similar dependencies are observed for phenols. Benzaldehydes which do not carry an ionic negative charge are accepted by the PAH-transporter, if they possess a second partially charged aldehyde or NO2-group. (2) Contraluminal [14C]succinate influx is inhibited by benzene 1,3- or 1,4-dicarboxylates,-disulfonates and 1,3-or 1,4-carboxybenzene-sulfonates. Monosubstituted benzoates do not interact with the dicarboxylate transporter, but NO2-polysubstituted benzoates do. Phenol itself and 2-substituted phenol interact weakly possibly due to oligomer formation. (3) The contraluminal sulfate transporter interacts only with compounds which show a negative group accumulation such as 3,5-dinitro- or 3,5-dichloro-substituted salicylates. The data are consistent with three separate anion transport systems in the contraluminal membrane: The PAH transporter interacts with hydrophobic molecules carrying one or two negative charges (−COO−, −SO 3 − ) or two or more than two partial negative charges (−OH, −CHO, −SO2NH2, −NO2). The dicarboxylate transporter requires two electronegative ionic charges (−COO−, −SO 3 − ) at 5–9 Å distance or one ionic and several partial charges (−Cl, −NO2) at a favourable distance. The sulfate transporter interacts with molecules which have neighbouring electronegative charge accumulation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1440
    Keywords: Transport interaction ; Organic anions ; Organic cations ; Sulfate ; Dicarboxylates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using the stopped flow tubular lumen or peritubular capillary microperfusion method, the apparent Ki values of a large number of organic anions and cations against the respective transport systems were evaluated. Thereby the luminal transport system for monocarboxylates (lactate), the contraluminal and luminal transport systems for dicarboxylates (succinate), sulfate, and hydrophobic organic cations (tetraethylammonium or N 1-methyl-nicotinamide), as well as contraluminal transport system for hydrophobic organic anions (para-aminohippurate, PAH) were characterized and their specificity determined. There is a partially overlapping substrate specificity between the PAH, dicarboxylate, and sulfate transport systems but also between the PAH and organic cation transport system. Xenobiotics and their metabolites are transported mainly by the organic anion (PAH) and organic cation transport systems. To test the complicated interactions possible a shot injection/urinary excretion method with simultaneous measurement of the intracellular concentration was developed. With this approach it is possible to evaluate (a) whether a substrate is net secreted or net reabsorbed, (b) whether interference with other substrates occurs, (c) whether interference takes place at the luminal or contraluminal cell side, and (d) whether cis-inhibition or trans-stimulation is the predominant mode of interaction. Finally, it will be discussed which ability a substrate must have to penetrate the cell membrane via a transporter, through the lipid bilayer, or both.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0005-2736
    Keywords: Anion transport ; Contraluminal membrane ; Hydrophobicity ; Molecular charge distribution ; Sulfate
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...