Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: BLOOD ; Germany ; LUNG ; PERFUSION ; imaging ; QUANTIFICATION ; VOLUME ; TIME ; BLOOD-FLOW ; blood flow ; FLOW ; HIGH-RESOLUTION MEASUREMENT ; MRI ; TRACER BOLUS PASSAGES ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; PARAMETERS ; SCINTIGRAPHY ; CONTRAST-ENHANCED MRI ; magnetic resonance imaging (MRI) ; QUANTITATIVE-ANALYSIS ; HEALTHY ; LUNG PERFUSION ; TRANSIT-TIME ; HEALTHY-VOLUNTEERS ; ARTERIAL ; INFLATION ; contrast-enhanced
    Abstract: Rationale and Objectives: The effect of breathholding on pulmonary perfusion remains largely unknown. The aim of this study was to assess the effect of inspiratory and expiratory breathhold on pulmonary perfusion using quantitative pulmonary perfusion magnetic resonance imaging (MRI). Methods and Results: Nine healthy volunteers (median age, 28 years; range, 20-45 years) were examined with contrast-enhanced time-resolved 3-dimensional pulmonary perfusion MRI (FLASH 313, TR/TE: 1.9/0.8 ms; flip angle: 40degrees; GRAPPA) during end-inspiratory and expiratory breathholds. The perfusion parameters pulmonary blood flow (PBF), pulmonary blood volume (PBV), and mean transit time (MTT) were calculated using the indicator dilution theory. As a reference method, end-inspiratory and expiratory phase-contrast (PC) MRI of the pulmonary arterial blood flow (PABF) was performed. Results: There was a statistically significant increase of the PBF (Delta = 182 mL/100mL/min), PBV (Delta = 12 mL/100 mL), and PABF (Delta = 0.5 L/min) between inspiratory and expiratory breathhold measurements (P 〈 0.0001). Also, the MTT was significantly shorter (Delta = -0.5 sec) at expiratory breathhold (P = 0.03). Inspiratory PBF and PBV showed a moderate correlation (r = 0.72 and 0.61, P less than or equal to0.008) with inspiratory PABF. Conclusion: Pulmonary perfusion during breathhold depends on the inspiratory level. Higher perfusion is observed at expiratory breathhold
    Type of Publication: Journal article published
    PubMed ID: 15654250
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: BLOOD ; Germany ; LUNG ; QUANTIFICATION ; TIME ; BLOOD-FLOW ; blood flow ; FLOW ; MRI ; PATTERNS ; PARAMETERS ; HYPERTENSION ; BLOOD-FLOW MEASUREMENTS ; BREATH-HOLD ; ENCODED CINE MRI ; HEMODYNAMICS ; RE ; HEALTHY-VOLUNTEERS ; phase-contrast MRI ; pulmonary circulation ; systemic circulation ; VENTRICULAR STROKE VOLUME
    Abstract: OBJECTIVE. The purpose of this study was to use phase-contrast MRI to evaluate the influence of various breathing maneuvers on the hemodynamics of the pulmonary and systemic arterial circulation. SUBJECTS AND METHODS. Twenty-five volunteers were examined with phase-contrast MRI. Flow measurements were acquired in the aorta, pulmonary trunk, and left and right pulmonary arteries during deep, large-volume inspiratory breath-hold, expiratory breath-hold, and smooth respiration (no breath-hold). Parameters assessed were peak velocity, blood flow, velocity gradient, and acceleration time. RESULTS. Pulmonary blood flow and peak velocity were significantly reduced during inspiratory breath-hold and expiratory breath-hold compared with no breath-hold (p 〈 0.01). Pulmonary velocity gradient in inspiratory breath-hold was significantly (p:! 0.01) lower than in expiratory breath-hold and no breath-hold. There was no difference in velocity gradient between expiratory breath-hold and no breath-hold. Peak velocity in the aorta was lowest with no breath-hold. Velocity gradient was highest in expiratory breath-hold, and no breath-hold had the smallest SD. Acceleration time in the pulmonary trunk showed no difference between inspiratory breath-hold, expiratory breath-hold, and no breath-hold. Blood flow distribution to the left (45-47%) and to the right (53-55%) lung was not influenced by breathing maneuver. CONCLUSION. Measurements during smooth respiration showed the smallest SD. Therefore, no-breath-hold measurements should be considered for assessment of hemodynamics in clinical practice
    Type of Publication: Journal article published
    PubMed ID: 16861549
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: LUNG ; PERFUSION ; imaging ; SYSTEM ; SYSTEMS ; VENTILATION ; NUCLEAR-MEDICINE ; TIME ; AIR ; MRI ; SIGNAL ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; DIFFERENCE ; NUMBER ; AGE ; WOMEN ; MEN ; DELIVERY ; motion correction ; nuclear medicine ; OXYGEN ; PULMONARY BLOOD-FLOW ; FEASIBILITY ; radiology ; methods ; NUCLEAR ; technique ; USA ; THICKNESS ; DIFFUSING-CAPACITY ; MEDICINE ; VALUES ; SECONDS ; RESPIRATORY SYNCHRONIZATION
    Abstract: Objective: The clinical feasibility of oxygen-enhanced magnetic resonance imaging (MRI) of the lung may benefit from the use of a simple gas delivery method. In this study, the oxygen-induced T1 change of the lung obtained using a closed O-2 delivery system was compared with that obtained by a conventional nontight face mask. Material and Methods: Twenty-three healthy subjects (15 men, 8 women, mean age = 25 years, age range = 20-35 years) underwent oxygen-enhanced MRI of the lung using a closed 02 delivery system composed by a tightly fitting face mask and a 60-L reservoir bag (equipment type A: n = 13, 9 men, 4 women, mean age = 24.4 years, age range = 20-32 years), or a clinically available nontight face mask (equipment type B: n = 10; 6 men, 4 women, mean age = 25.8 years, age range = 20-35 years). The effect of 100%-oxygen inhalation was assessed using a Snapshot FLASH T1-mapping technique (repetition time/echo time 1.5-1.6/0.56 milliseconds; matrix 128 X 90; acquisition time 3.3-3.7 seconds; slice thickness 15-20 mm; number of images = 40). By nonlinear curve fitting, the mean T1 values of the left and right lung at room air and 100%-oxygen ventilation were calculated (T1(room air, right); T1(oxygen, right); T1(room air, left); T1(oxygen, left)). The average T1 differences (Delta T1 = T1(room air) - T1(oxygen)) of the 2 volunteer groups were compared (Wilcoxon signed rank test, Mann-Whimey U test). Results: The mean T1 values obtained using the 2 respiratory equipments at room air or oxygen ventilation were not significantly different (A vs. B at room air ventilation: P = 0.85 for the right lung, P = 0.27 for the left lung; A vs. B at oxygen ventilation: P = 0.55 for the left lung, P = 0.29 for the right lung). With both systems, the mean T1 values decreased significantly after oxygen inhalation (P = 0.03-0.0002). For both lungs, the AT I obtained using the equipment type A was statistically equivalent to that obtained using the equipment type B: Delta T1(A), (right) = 96 +/- 19 milliseconds versus Delta T1(B), (right) = 97 +/- 34 milliseconds (P = 0.82); Delta T1(A), (left) = 74 +/- 47 milliseconds versus Delta T1(B), (left) = 68 +/- 63 milliseconds (P = 0.85). Conclusion: Gas delivery in oxygen-enhanced MRI of the lung can be performed with a clinically available standard face mask, without the need for closed sophisticated equipments
    Type of Publication: Journal article published
    PubMed ID: 18496048
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: DIAGNOSIS ; SYSTEMS ; TIME ; REPRODUCIBILITY ; COMPUTED-TOMOGRAPHY ; THIN-SECTION CT ; magnetic resonance imaging (MRI) ; CHILDREN ; ADULTS ; cystic fibrosis ; Lung disease ; Scoring system
    Abstract: Magnetic resonance imaging (MRI) gains increasing importance in the assessment of cystic fibrosis (CF) lung disease. The aim of this study was to develop a morpho-functional MR-scoring-system and to evaluate its intra- and inter-observer reproducibility and clinical practicability to monitor CF lung disease over a broad severity range from infancy to adulthood. 35 CF patients with broad age range (mean 15.3years; range 0.5-42) were examined by morphological and functional MRI. Lobe based analysis was performed for parameters bronchiectasis/bronchial-wall-thickening, mucus plugging, abscesses/sacculations, consolidations, special findings and perfusion defects. The maximum global score was 72. Two experienced radiologists scored the images at two time points (interval 10weeks). Upper and lower limits of agreement, concordance correlation coefficients (CCC), total deviation index and coverage probability were calculated for global, morphology, function, component and lobar scores. Global scores ranged from 6 to 47. Intra- and inter-reader agreement for global scores were good (CCC: 0.98 (R1), 0.94 (R2), 0.97 (R1/R2)) and were comparable between high and low scores. Our results indicate that the proposed morpho-functional MR-scoring-system is reproducible and applicable for semi-quantitative evaluation of a large spectrum of CF lung disease severity. This scoring-system can be applied for the routine assessment of CF lung disease and maybe as endpoint for clinical trials.
    Type of Publication: Journal article published
    PubMed ID: 21429685
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Germany ; LUNG ; PERFUSION ; CT ; DIAGNOSIS ; IMAGES ; VISUALIZATION ; DISEASE ; DIFFERENTIATION ; RESOLUTION ; TIME ; PATIENT ; MR ; MRI ; MAGNETIC-RESONANCE ; arteries ; EMBOLISM ; MR-ANGIOGRAPHY ; magnetic resonance angiography ; pathology ; ANGIOGRAPHY ; HYPERTENSION ; contrast media ; MANAGEMENT ; PULMONARY ; PH ; ARTERIAL-HYPERTENSION ; ARTERIAL ; LEVEL ; IMAGE QUALITY ; CONSENSUS ; PULMONARY-ARTERIES ; TEMPORAL RESOLUTION ; HIGH-SPATIAL-RESOLUTION ; CTEPH ; IPAH
    Abstract: Differentiation between different forms of pulmonary hypertension (PH) is essential for correct disease management. The goal of this study was to elucidate the clinical impact of high spatial resolution MR angiography (SR-MRA) and time-resolved MRA (TR-MRA) to differentiate between patients with chronic thromboembolic PH (CTEPH) and idiopathic pulmonary arterial hypertension (IPAH). Ten PH patients and five volunteers were examined. Twenty TR-MRA data sets (TA 1.5 s) and SR-MRA (TA 23 s) were acquired. TR-MRA data sets were subtracted as angiography and perfusion images. Evaluation comprised analysis of vascular pathologies on a segmental basis, detection of perfusion defects, and bronchial arteries by two readers in consensus. Technical evaluation comprised evaluation of image quality, signal-to-noise ratio (SNR) measurements, and contrast-media passage time. Visualization of the pulmonary arteries was possible down to a subsegmental (SR-MRA) and to a segmental (TR-MRA) level. SR-MRA outperformed TR-MRA in direct visualization of intravascular changes. Patients with IPAH predominantly showed tortuous pulmonary arteries while in CTEPH wall irregularities and abnormal proximal-to-distal tapering was found. Perfusion images showed a diffuse pattern in IPAH and focal defects in CTEPH. TR-MRA and SR-MRA resulted in the same final diagnosis. Both MRA techniques allowed for differentiation between IPAH and CTEPH. Therefore, TR-MRA can be used in the clinical setting, especially in dyspneic patients
    Type of Publication: Journal article published
    PubMed ID: 16041529
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: BLOOD ; Germany ; LUNG ; SPIRAL CT ; VOLUME ; DISEASE ; POPULATION ; HEART ; TIME ; PATIENT ; BLOOD-FLOW ; blood flow ; FLOW ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; AGE ; arteries ; PARAMETERS ; HYPERTENSION ; HEALTHY ; PULMONARY ; VELOCITY ; fibrosis ; PH ; HEALTHY-VOLUNTEERS ; CHRONIC THROMBOEMBOLISM ; CYSTIC-FIBROSIS ; ARTERIAL ; PULMONARY-ARTERIES ; early development ; bronchosystemic shunt ; cystic fibrosis
    Abstract: Cystic fibrosis (CF) leads to disabling lung disease and pulmonary hypertension (PH). The goal of this study was to assess the hemodynamics in the systemic and pulmonary arterial circulation of patients with CF using MRI. Ten patients with CF and 15 healthy volunteers were examined (1.5-T MRI). Phase-contrast flow measurements were assessed in the ascending aorta, pulmonary trunc, and the left and right pulmonary arteries (PA), resulting in the following parameters: peak velocity (PV) (centimeters per second) velocity rise gradient (VRG), time to PV (milliseconds), and the average area (centimeters squared). The blood flow ratio between the right and left lungs and the bronchosystemic shunt were calculated. For the ascending aorta and pulmonary trunc no parameter was significantly different between both populations. In the right PA a significantly lower PV (p=0.001) and VRG (p=0.02) was found. In the left PA there was a significantly (p=0.007) lower PV but no significant (p=0.07) difference between the VRG. The areas of the right (p=0.08) and left (p=0.5) PA were not significantly enlarged. For the volunteers a linear increase of PV in both PA was found with age, while it decreased in patients with CF. The blood flow distribution (right/left lung) showed no significant (p=0.7) difference between the groups. There was a significantly (p 〈 0.001) higher bronchosystemic shunt volume in patients with CF (1.3 l/min) than in volunteers (0.1 l/min). Magnetic resonance based flow measurements in the right and left PA showed first indications for early development of PH. The significant increase in bronchosystemic shunt volume might be indicative fo the extent of parenchymal changes
    Type of Publication: Journal article published
    PubMed ID: 15761712
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: SPECTRA ; Germany ; LUNG ; PERFUSION ; chest ; imaging ; DISEASE ; DISEASES ; DISTINCT ; RESOLUTION ; NUCLEAR-MEDICINE ; TIME ; MECHANISM ; CONTRAST ; LYMPH-NODES ; MR ; MRI ; SEQUENCE ; SEQUENCES ; SUSCEPTIBILITY ; magnetic resonance ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; ECHO ; LESIONS ; EXPERIENCE ; arteries ; MORPHOLOGY ; EMBOLISM ; sensitivity ; MOTION ; MR-ANGIOGRAPHY ; pathology ; ANGIOGRAPHY ; MR angiography ; nuclear medicine ; MR imaging ; LUNG PERFUSION ; pulmonary embolism ; radiology ; SINGLE ; IMPAIRMENT ; analysis ; NUCLEAR ; technique ; parallel imaging ; TEMPORAL RESOLUTION ; function ; LYMPH-NODE ; SPECTRUM ; PULMONARY-HYPERTENSION ; perfusion scintigraphy ; MEDICINE ; HOLD ; RESONANCE ; PRECESSION ; STEADY-STATE ; DYSFUNCTION ; CONTRAST-MEDIA ; PRIMARY MEDIASTINAL TUMORS
    Abstract: Magnetic resonance imaging (MRI) is capable of imaging infiltrative lung diseases as well as solid lung pathologies with high sensitivity. The broad use of lung MRI was limited by the long study time as well as its sensitivity to motion and susceptibility artifacts. These disadvantages were overcome by the utilisation of new techniques such as parallel imaging. This article aims to propose a standard MR imaging protocol at 1.5 T and presents a spectrum of indications. The standard protocol comprises non-contrast-enhanced sequences. Following a GRE localizer (2D-FLASH), a coronal T2w single-shot half-Fourier TSE (HASTE) sequence with a high sensitivity for infiltrates and a transversal T1w 3D-GRE (VIBE) sequence with a high sensitivity for small lesions are acquired in a single breath hold. Afterwards, a coronal steady-state free precession sequence (TrueFISP) in free breathing is obtained. This sequence has a high sensitivity for central pulmonary embolism. Distinct cardiac dysfunctions as well as an impairment of the breathing mechanism are visible. The last step of the basic protocol is a transversal T2w-STIR (T2-TIRM) in a multi-breath holds technique to visualize enlarged lymph nodes as well as skeletal lesions. The in-room time is approximately 15 min. The extended protocol comprises contrast-enhanced sequences (3D-GRE sequence (VIBE) after contrast media; about five additional minutes). Indications are tumorous lesions, unclear (malignant) pleural effusions and inflammatory diseases (vaskulitis). A perfusion analysis can be achieved using a 3D-GRE in shared echo-technique (TREAT) with a high temporal resolution. This protocol can be completed using a MR-angiography (3D-FLASH) with high spatial resolution. The in-room time for the complete protocol is approximately 30 min. (c) 2007 Elsevier Ireland Ltd. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 17900843
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...