Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: TUMORS ; STABILITY ; ARCHITECTURE ; mammographic density ; GENOME-WIDE ASSOCIATION ; AUTOPHAGY ; COMMON VARIANTS ; BRCA2 MUTATION CARRIERS ; GENOTYPE IMPUTATION ; ZNF365
    Abstract: Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 10.82-0.881) and ER-negative (OR = 0.87 [0.82-0.911) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:0) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 10.91-0.951 and OR = 1.06 [1.03-1.091) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.131) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.961). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.
    Type of Publication: Journal article published
    PubMed ID: 26073781
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: APOPTOSIS ; GENES ; TUMORS ; ACTIVATION ; PROMOTER ; SUBTYPES ; susceptibility loci ; GENOME-WIDE ASSOCIATION ; CYCLIN D1 EXPRESSION ; FUNCTIONAL VARIANTS
    Abstract: Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER-: odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, p(trend) = 5.7 3 10(-44)) and estrogen-receptor-negative (ER-: OR = 1.10, 95% CI = 1.05-1.15, p(trend) = 3.0 x 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [p(cond) = 1.61 x 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER-: OR = 0.90, 95% CI = 0.87-0.93, p(cond) = 1.4 x 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
    Type of Publication: Journal article published
    PubMed ID: 25529635
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...