Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (2)
  • Mice  (2)
  • Thiobacillus ferrooxidans  (2)
  • 1
    ISSN: 1432-0789
    Keywords: Pyrites ; Pyrite oxidation ; Gypsum Alkali soil ; Reclamation ; Soluble sulfur Welland rice ; Wheat ; Thiobacillus thioxidans ; Thiobacillus ferrooxidans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We evaluated the effect of agricultural-grade (AG) pyrites (total sulfur 22%) varying in water-soluble sulfur (1–8%) and gypsum on the soil properties and yields of rice and wheat in alkali soils during the years 1993–1995 at the Gudha and Saraswati experimental farms at the Central Soil Salinity Research Institute, Karnal, India. Gypsum and pyrites were applied on the basis of gypsum requirement (GR) of the soils. Results showed that the efficiency of AG pyrites in decreasing soil pH and exchangeable sodium percentage (ESP) and increasing crop yields was dependent on their water-soluble sulfur content at the time of application to the field. Pyrites with 5.5% and 8% soluble sulfur were as effective as gypsum. The freshly mined pyrite (water-soluble S 1%) was found to be inefficient in reclaiming alkali soils. We also explored the possibility of increasing the water-soluble sulfur content of pyrite by optimizing its storage conditions. When pyrite (1% water-soluble S) was stored under moist conditions by sprinkling water over the bags under a rain shelter, there was an enrichment of indigenous iron- and sulfur-oxidizing bacteria of pyrite, and the water-soluble sulfur increased to 5% within a period of 6 months. However no such increase occurred when pyrite was stored dry. We conclude that the soluble sulfur content of pyrite increased during its storage under moist conditions and should be between 6% and 8% at the time of its application to the field.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Pyrites ; Pyrite oxidation ; Gypsum ; Alkali soil ; Reclamation ; Soluble sulfur ; Wetland rice ; Wheat ; Thiobacillus thioxidans ; Thiobacillus ferrooxidans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We evaluated the effect of agricultural-grade (AG) pyrites (total sulfur 22%) varying in water-soluble sulfur (1–8%) and gypsum on the soil properties and yields of rice and wheat in alkali soils during the years 1993–1995 at the Gudha and Saraswati experimental farms at the Central Soil Salinity Research Institute, Karnal, India. Gypsum and pyrites were applied on the basis of gypsum requirement (GR) of the soils. Results showed that the efficiency of AG pyrites in decreasing soil pH and exchangeable sodium percentage (ESP) and increasing crop yields was dependent on their water-soluble sulfur content at the time of application to the field. Pyrites with 5.5% and 8% soluble sulfur were as effective as gypsum. The freshly mined pyrite (water-soluble S 1%) was found to be inefficient in reclaiming alkali soils. We also explored the possibility of increasing the water-soluble sulfur content of pyrite by optimizing its storage conditions. When pyrite (1% water-soluble S) was stored under moist conditions by sprinkling water over the bags under a rain shelter, there was an enrichment of indigenous iron- and sulfur-oxidizing bacteria of pyrite, and the water-soluble sulfur increased to 5% within a period of 6 months. However no such increase occurred when pyrite was stored dry. We conclude that the soluble sulfur content of pyrite increased during its storage under moist conditions and should be between 6% and 8% at the time of its application to the field.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    facet.materialart.
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Padmanee -- Allison, James P -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):49. doi: 10.1126/science.1217940.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genitourinary Medical Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA. padsharma@mdanderson.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cancer Vaccines/history/therapeutic use ; History, 20th Century ; History, 21st Century ; Humans ; Mice ; Neoplasms/history/*immunology/therapy ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-17
    Description: The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1beta production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1beta resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Loebbermann, Jens -- Nakaya, Helder I -- Khan, Nooruddin -- Ma, Hualing -- Gama, Leonardo -- Machiah, Deepa K -- Lawson, Benton -- Hakimpour, Paul -- Wang, Yi-chong -- Li, Shuzhao -- Sharma, Prachi -- Kaufman, Randal J -- Martinez, Jennifer -- Pulendran, Bali -- R01 DK088227/DK/NIDDK NIH HHS/ -- R01 DK103185/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK042394/DK/NIDDK NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- ZIA ES103286-01/Intramural NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):523-7. doi: 10.1038/nature17186. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508, Brazil. ; Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. ; Division of Pathology, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Virology Core, Emory Vaccine Center and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30329, USA. ; Degenerative Disease Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037 USA. ; National Institute of Environmental Health Sciences, Mail Drop D2-01 Research Triangle Park, North Carolina 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/administration & dosage/deficiency/*metabolism/pharmacology ; Animals ; Antigen-Presenting Cells/immunology/metabolism ; Autophagy ; Colitis/etiology/*metabolism/pathology/prevention & control ; Disease Models, Animal ; Epithelial Cells/metabolism ; Female ; Humans ; Inflammasomes/*antagonists & inhibitors/metabolism ; Inflammation/etiology/*metabolism/pathology/prevention & control ; Interleukin-1beta/immunology ; Intestines/*metabolism/*pathology ; Male ; Mice ; Microtubule-Associated Proteins/deficiency/metabolism ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Reactive Oxygen Species/metabolism ; Stress, Physiological ; Th17 Cells/immunology ; Ubiquitin-Activating Enzymes/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...