Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Aminoacyl-tRNA synthetase ; RNA splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial leucyl-tRNA synthetase (mLRS) of Saccharomyces cerevisiae is involved in both mitochondrial protein synthesis and pre-mRNA splicing. We have created mutations in the regions HIGH, GWD and KMSKS, which are involved in ATP-, amino acid-and tRNA-binding respectively, and which have been conserved in the evolution of group I tRNA synthetases. The mutants GRD and NMSKS have no discernible phenotype. The mutants AWD and ARD act as null alleles and lead to the production of 100% cytoplasmic petites. The mutants HIGN, NIGH and KMSNS are unable to grown on glycerol even in the presence of an intronless mitochondrial genome and accumulate petites to a greater extent than the wild-type but less than 40%. Experiments with an imported bI4 maturase indicate that the lesion in these mutations primarily affects the synthetase and not the splicing functions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Aminoacyl-tRNA synthetase ; RNA splicing ; Group I introns ; RNA maturase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The Saccharomyces cerevisiae nuclear gene NAM2 codes for mitochondrial leucyl-tRNA synthetase (mLRS). Herbert et al. (1988, EMBO J 7:473–483) proposed that this protein is involved in mitochondrial RNA splicing. Here we present the construction and analyses of nine mutations obtained by creating two-codon insertions within the NAM2 gene. Three of these prevent respiration while maintaining the mitochondrial genome. These three mutants: (1) display in vitro a mLRS activity ranging from 0%–50% that of the wild type: (2) allow in vivo the synthesis of several mitochondrially encoded proteins; (3) prevent the synthesis of the COXII protein but not of its mRNA; (4) abolish the splicing of the group I introns bI4 and aI4; and (5) affect significantly the excision of the group I introns bI2, bI3 and aI3. Importation of the bI4 maturase from the cytoplasm into mitochondria in a nam2 − mutant strain does not restore the excision of the introns bI4 and aI4 implying that the splicing deficiency does not result from the absence of the bI4 maturase. We conclude that the mLRS is a splicing factor essential for the excision of the group I introns bI4 and aI4 and probably important for the excision of other group I introns.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 6 (1990), S. 271-297 
    ISSN: 0749-503X
    Keywords: Yeast ; DNA-binding proteins ; transcription regulation ; RNA polymerase B ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: Yeast ; genome ; ribosomal protein L21 ; RIM2 ; ATP carrier ; MSI1 ; IRA1 ; GAP ; PGI1 ; glycolytic genes ; leucine zipper ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We report the DNA sequence of an 8 kb segment localized on the right arm of chromosome II from Saccharomyces cerevisiae. The sequence reveals the presence of eight open reading frames (ORFs). Three of them, YBR1402, YBR1405 and YBR1406 are previously sequenced genes, respectively the RIM2 (replication in mitochondria), MSI1 (multicopy suppressor of IRA1 gene) and PGI1 (phosphoglucoisomerase) genes. The predicted product of the ORF YBR1401 could be the putative yeast ribosomal protein L21. A new essential gene, YBR1403, has been identified by disruption; it possesses a leucine zipper motif.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Yeast ; genome ; KRE2/MNT1 ; KTR1 ; KTR2 ; BEM1 ; BUD5 ; CDC24 ; TUP1 ; PRP4 ; MSI1 ; STE4 ; CDC4 ; dTAFII80 ; transducin ; G-β subunit ; WD-40 repeat ; SH3 domain ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: This paper reports the DNA sequence and analysis of an 11·7 kb segment localized on the right arm of Saccharomyces cerevisiae chromosome II. This fragment contains one incomplete and five long and non-overlapping open reading frames (ORFs) designated from centromere to telomere-proximal side as: YBR1406, 1409, 1410, 1411, 1412 and 1413. YBR1406 corresponds to the 5′ end to PGI1 encoding phosphoglucoisomerase. YBR1410 encodes a polypeptide of 798 amino acids whose C terminus contains five repeats (WD-40 repeat) similar to those found in the β-subunits of G proteins and different yeast proteins such as Tup1, Prp4 and Cdc4. The higher similarity score is obtained with dTAFII80, a component of the RNA polymerase II transcriptional complex TFIID. YBR1411 encodes a polypeptide of 464 amino acids which belongs to the family of α-mannosyltransferases: KRE2/MNT1, KTR1, KTR2, YUR1 and the product of previously sequenced ORF YBR1445. YBR1412 corresponds to BEM1. The two ORFs, YBR1409 and YBR1413, which do not exhibit significant similarity with any known coding sequences, define new genes. The sequence has been deposited in the EMBL Data Library under Accession Number Z21487.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: Yeast ; genome ; ribosomal protein S13 ; SUP46 ; URP1 ; rat ribosomal protein L21 ; AAA-family proteins ; MADS-domain ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The nucleotide sequence of a 12·5 kb fragment localized to the right arm of chromosome II of Saccharomyces cerevisiae has been determined. The sequence contains eight putative genes. Two of them are contiguous and represent two ribosomal protein genes: SUP46 and URP1. SUP46 is implicated in translation fidelity and encodes the ribosomal protein S13. URP1 is homologous to the rat ribosomal protein gene L21. The open reading frame (ORF) YBR1245 is similar in its N-terminal part to transcription factors like SRF and MCM1. The ORF YBR1308 shows homology with proteins of the AAA-family (ATPases Associated with diverse cellular Activities). Two genes are predicted to encode putative membrane proteins. The sequence has been deposited in the EMBL data library under Accession Number U02073.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1476-5535
    Keywords: Yeast ; Glycerol production ; Low alcohol content wine ; Enology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Mutants partially resistant to the repressive effect of glucose have been isolated from aSaccharomyces cerevisiae strain totally deficient in phosphoglycerate mutase activity (EC 5.4.2.1) by a selection procedure involving the catabolite-repressive effect of 5-thio-d-glucose (5TG). These mutants are able to resist glucose concentrations up to 15 g L−1 and exhibit several non-repressed metabolic pathways such as gluconeogenesis, glyoxylic shunt or mitochondrial respiratory chain. Moreover, when these mutants are grown in aerobiosis on ethanol and glucose as sole substrates, glucose is mainly converted into glycerol in order to maintain a normal redox balance. Optimal glucose and oxygen concentrations have been defined for resting cells in order to obtain a glycerol yield from glucose close to 100%. The physiological characteristics of one of these mutants led us to consider an application of this yeast strain in reducing the ethanol content of wines previously lowered in ethanol content by physical processes.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0749-503X
    Keywords: Yeast ; genome ; MCM2 ; MCM3 ; CDC46 ; KRE2 ; KTR1 ; MNT1 ; YUR1 ; DUR1,2 ; protein glycosylation ; lipase ; peroxisomal targeting signal ; DNA replication ; cdc21sp ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A 12 820 bp fragment from the right arm of chromosome II of Saccharomyces cerevisiae was sequenced and analysed. This fragment contains six non-overlapping long open reading frames (ORFs) designated from the centromere- to the telomere-proximal ends as: YBR1441, 1443, 1444, 1445, 1446 and 1448. YBR1441 encodes a polypeptide of 845 amino acids which shares a long consensus domain with products of S. cerevisiae MCM2, MCM3, CDC46 and Schizosaccharomyces pombe cdc21+ genes. These genes are involved in DNA replication. YBR1445 encodes a polypeptide of 404 amino acids which has strong similarity with the S. cerevisiae KRE2/MNT1, YUR1, KTR1 gene products. The KRE2/MNT1 protein is an α-1,2-mannosyltransferase. The product of YBR1444, which encodes a protein of 375 amino acids, presents a lipase signature sequence and a peroxisomal targeting signal. YBR1448, whose sequence extends further on the telomere-proximal end of the fragment, is identical to the 3′ end of the DUR1,2 gene encoding urea amidolyase. The two ORFs, YBR1443 and YBR1446, exhibit no significant similarity with any known gene.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...