Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RICHTERSIUS-CORONIFER  (5)
  • gene expression  (4)
Keywords
Publisher
Years
  • 1
    Keywords: gene expression ; BIOLOGY ; EXPRESSION ; CELL ; GENE ; GENE-EXPRESSION ; representational difference analysis ; analysis
    Type of Publication: Book chapter
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: COMBINATION ; Germany ; TOOL ; GENE ; PROTEIN ; PROTEINS ; METABOLISM ; MOLECULES ; MECHANISM ; mechanisms ; TOLERANCE ; DISCOVERY ; MOLECULE ; WATER ; DAMAGE ; bioinformatics ; MAMMALIAN-CELLS ; STABILITY ; review ; regulation ; HEAT-SHOCK-PROTEIN ; LIFE ; development ; cryopreservation ; BACTERIA ; biotechnology ; STATE ; CHAPERONE ACTIVITY ; WELL ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ADORYBIOTUS-CORONIFER ; Anhydrobiosis ; ARTEMIA-FRANCISCANA ; Biostabilization ; Cryobanking ; Cryoprotectant ; Cryptobiosis ; DESICCATION TOLERANCE ; FRESH-WATER SPONGE ; SHOCK/ALPHA-CRYSTALLIN PROTEIN ; STRESS-PROTEIN
    Abstract: Certain organisms found across a range of taxa, including bacteria, yeasts, plants and many invertebrates such as nematodes and tardigrades are able to survive almost complete loss of body water. The dry organisms may remain in this state. which is known as anhydrobiosis. for decades without apparent damage. When water again becomes available, they rapidly rehydrate and resume active life. Research in anhydrobiosis has focused mainly on sugar metabolism and stress proteins. Despite the discovery of various molecules which are involved in desiccation and water stress, knowledge of the regulatory network governing the stability of the cellular architecture and the metabolic machinery during dehydration is still fragmentary and not well understood. A combination of transcriptional, proteomic and metabolic approaches with bioinformatics tools can provide a better understanding of gene regulation that underlie the biological functions and physiology related to anhydrobiosis. The development of this concept will raise exciting possibilities and techniques for the preservation and stabilization of biological materials in the dry state. (c) 2009 Elsevier Inc. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 19472511
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; TOLERANCE ; CAENORHABDITIS-ELEGANS ; ARABIDOPSIS-THALIANA ; SUPEROXIDE-DISMUTASE ; RICHTERSIUS-CORONIFER ; LIFE-SPAN REGULATION ; VITELLOGENIN GENES ; YOLK PROTEINS ; WATER-STRESS
    Abstract: Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.
    Type of Publication: Journal article published
    PubMed ID: 23029181
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; PROTECTION ; tumor ; COMBINATION ; Germany ; CDNA ; GENE ; GENE-EXPRESSION ; GENES ; GENOME ; HYBRIDIZATION ; microarray ; transcription ; HEART ; TIME ; INJURIES ; MECHANISM ; REPERFUSION ; RAT ; INTERVENTION ; gene expression ; DIFFERENCE ; arteries ; POLYMERASE-CHAIN-REACTION ; NETHERLANDS ; CHAIN-REACTION ; ARTERY ; myocardium ; ISCHEMIA-REPERFUSION INJURY ; INJURY ; ALPHA MESSENGER-RNA ; CARDIAC MYOCYTE ; CONFERS RESISTANCE ; E-SELECTIN GENE ; INFARCTION ; MATRIX-METALLOPROTEINASE ACTIVITY ; preconditioning ; REPERFUSION INJURY ; representational difference analysis ; TRISTETRAPROLIN
    Abstract: Myocardial ischemic preconditioning (IPC) is a potent endogenous mechanism of cardioprotection against ischemia-reperfusion injury. In this study we focused on the second phase of IPC as the most interesting in terms of therapeutic implementations. We aimed at the detection of genes, which are differentially expressed at 16 h after reperfusion. Preconditioning of canine myocardium was initiated by 5 min occlusion of the left anterior descending coronary artery with subsequent reperfusion. cDNA representational difference analysis in combination with microarray hybridization and reverse transcription polymerase chain reaction were used to reveal the changes in gene expression in canine hearts. We found that functionally related genes for tristetraproline (TTP), selectin E, matrix metalloproteinase 9, and tumor necrosis factor-a were highly upregulated at the late phase of IPC. The upregulation of TTP gene at the late phase of IPC, reported here for the first time, may represent a cardioprotective mechanism, which could be a promising perspective in clinical interventions against ischemia-reperfusion injuries of the heart. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 12860385
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: IONIZING-RADIATION ; Germany ; MODEL ; INFORMATION ; GENE ; GENES ; DNA ; TOLERANCE ; SEQUENCE ; SEQUENCES ; WATER ; IDENTIFICATION ; CHROMATIN ; HEAT-SHOCK ; STRESS ; genetics ; DAMAGE ; DATABASE ; CAENORHABDITIS-ELEGANS ; assembly ; TRANSLATION ; EXPRESSED SEQUENCE TAGS ; transcriptome ; CONTROLLED TUMOR PROTEIN ; radiation tolerance ; Genetic ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ADORYBIOTUS-CORONIFER ; DESICCATION TOLERANCE ; Species ; CONTRIBUTE ; EST ; ACID-BINDING PROTEINS ; FREEZE TOLERANCE ; POLYPEDILUM-VANDERPLANKI ; Sequence information
    Abstract: Background: The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results: We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof similar to 50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions: This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response
    Type of Publication: Journal article published
    PubMed ID: 20226016
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: EXPRESSION ; Germany ; MODEL ; INFORMATION ; SYSTEM ; GENE ; GENE-EXPRESSION ; GENOME ; PROTEIN ; PROTEINS ; RESOLUTION ; MECHANISM ; FAMILY ; DOMAIN ; mechanisms ; TOLERANCE ; CYCLE ; SEQUENCE ; IDENTIFICATION ; gene expression ; HEAT-SHOCK ; mass spectrometry ; SPECTROMETRY ; DATABASE ; MASS-SPECTROMETRY ; PROJECT ; PROTEOMICS ; PROTEIN IDENTIFICATION ; ARABIDOPSIS-THALIANA ; HIGH-RESOLUTION ; ANNOTATION ; SCIENCE ; LIFE ; MOLECULAR-MECHANISMS ; GLUTATHIONE S-TRANSFERASES ; Genetic ; protein extraction ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; ARTEMIA-FRANCISCANA ; DESICCATION TOLERANCE ; EST ; Sequence information ; Molecular mechanisms ; BRINE SHRIMP ; TREHALOSE
    Abstract: Background: Tardigrades are small, multicellular invertebrates which are able to survive times of unfavourable environmental conditions using their well-known capability to undergo cryptobiosis at any stage of their life cycle. Milnesium tardigradum has become a powerful model system for the analysis of cryptobiosis. While some genetic information is already available for Milnesium tardigradum the proteome is still to be discovered. Principal Findings: Here we present to the best of our knowledge the first comprehensive study of Milnesium tardigradum on the protein level. To establish a proteome reference map we developed optimized protocols for protein extraction from tardigrades in the active state and for separation of proteins by high resolution two-dimensional gel electrophoresis. Since only limited sequence information of M. tardigradum on the genome and gene expression level is available to date in public databases we initiated in parallel a tardigrade EST sequencing project to allow for protein identification by electrospray ionization tandem mass spectrometry. 271 out of 606 analyzed protein spots could be identified by searching against the publicly available NCBInr database as well as our newly established tardigrade protein database corresponding to 144 unique proteins. Another 150 spots could be identified in the tardigrade clustered EST database corresponding to 36 unique contigs and ESTs. Proteins with annotated function were further categorized in more detail by their molecular function, biological process and cellular component. For the proteins of unknown function more information could be obtained by performing a protein domain annotation analysis. Our results include proteins like protein member of different heat shock protein families and LEA group 3, which might play important roles in surviving extreme conditions. Conclusions: The proteome reference map of Milnesium tardigradum provides the basis for further studies in order to identify and characterize the biochemical mechanisms of tolerance to extreme desiccation. The optimized proteomics workflow will enable application of sensitive quantification techniques to detect differences in protein expression, which are characteristic of the active and anhydrobiotic states of tardigrades
    Type of Publication: Journal article published
    PubMed ID: 20224743
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: MECHANISM ; FAMILY ; TOLERANCE ; SEQUENCE ; MOLECULAR CHAPERONES ; heat shock proteins ; NUCLEOTIDE EXCHANGE FACTORS ; HSP70 ; MILNESIUM-TARDIGRADUM ; RICHTERSIUS-CORONIFER ; co-chaperones ; CRYSTALLIN PROTEIN ; high throughput proteomics ; Hsp40 (DnaJ) ; Hsp60 (chaperonin) ; Hsp70 (DnaK) ; HSP90 ; small heat shock proteins ; Tardigrades
    Abstract: The eutardigrade Milnesium tardigradum can undergo cryptobiosis and can survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood. Heat shock proteins (Hsps) as an important subgroup of chaperones which protect proteins from irreversible aggregation and degradation might play an important role in anhydrobiosis. In this report, we therefore investigated Hsps in tardigrades in the active versus the anhydrobiotic state employing proteomics techniques. Protein lysates from tardigrades in both states were separated by one-dimensional gel electrophoresis, in-gel digested with trypsin and tryptic peptides were analyzed by high sensitive nanoLC-ESI-MS/MS on a LTQ-Orbitrap mass spectrometer. This study indicates the presence of Hsps of the major chaperone families Hsp40, Hsp60, Hsp70, Hsp90, small Hsps and furthermore nucleotide exchange factors and co-chaperones in Milnesium tardigradum. A comparative analysis of the identified Hsps in both states was performed by calculating the exponentially modified protein abundance index
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1569-8041
    Keywords: chromosomal aberrations ; gene expression ; oncogenes ; pancreatic cancer ; tumor suppressor genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aim: The present review summarizes our strategies aimed at identifying and characterizing genetic alterations occuring at the transcriptional and chromosomal level in pancreatic cancer. Methods: To study transcriptional alterations we have used a number of techniques including modified versions of differential hybridizations and cDNA-RDA (representational difference analysis). Comparative genomic hybridization (CGH) was used to study chromosomal aberrations occuring in pancreatic cancer tissues. Results: The study of transcriptional alterations led to the identification of more than 500 genes with differential expression in pancreatic cancer. The sum of these alterations represented the first expression profile characteristic for pancreatic tumors. The CGH analysis allowed the identification of a number of chromosomal regions containing putative tumor suppressor genes or oncogenes. These regions are presently being characterized at the molecular level. In a first approach the myb-oncogene was identified as the relevant oncogene of an amplification on 6q occurring in up to 10% of pancreatic cancer patients. Conclusions: Genes isolated in both approaches represent potential new disease genes for pancreatic cancer and are at present being characterized by individual or serial analysis.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...