Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • human  (6)
  • 1
    Keywords: CELLS ; EXPRESSION ; Germany ; human ; CLONING ; GENE ; GENES ; HYBRIDIZATION ; DIFFERENTIATION ; DOMAIN ; IN-SITU ; PATTERNS ; gene expression ; cytoskeleton ; intermediate filaments ; keratin ; LAYER ; CELLS FLUGELZELLEN ; CUTICLE CELLS ; CYTOKERATINS ; GENE DOMAIN ; human hair follicle ; HUXLEY ; MAMMALIAN-TISSUES
    Abstract: In this study we report on the cloning of two novel human type II keratin cDNAs, K6irs3 and K6irs4, which were specifically expressed in the inner root sheath of the hair follicle. Together with the genes of two previously described type II inner root sheath keratins, K6irs1 and K6irs2, the K6irs3 and K6irs4 genes were subclustered in the type II keratin/hair keratin gene domain on chromosome 12q13. Evolutionary tree analysis using all known type II epithelial and hair keratins revealed that the K6irs1-4 formed a branch separate from the other epithelial and hair keratins. RNA in situ hybridization and indirect immunofluorescence studies of human hair follicles, which also included the K6irs2 keratin, demonstrated that both K6irs2 and K6irs3 were specifically expressed in the inner root sheath cuticle, but showed a different onset of expression in this compartment. Whereas the K6irs3 expression began in the lowermost bulb region, that of K6irs2 was delayed up to the height of the apex of the dermal papilla. In contrast, the K6irs4 keratin was specifically expressed in the Huxley layer. Moreover, K6irs4 was ideally suited to further investigate the occurrence of Flugelzellen, i.e., Huxley cells, characterized by horizontal cell extensions that pass through the Henle layer, abut upon the companion layer, and form desmosomal connections with the surrounding cells. Previously, we detected Flugelzellen only in the region along the differentiated Henle layer. Using the Huxley-cell-specific K6irs4 antiserum, we now demonstrate this cell type to be clearly apposed to the entire Henle layer. We provide evidence that Flugelzellen penetrate the Henle layer actively and may play a role in conferring plasticity and resilience to the otherwise rigid upper Henle layer
    Type of Publication: Journal article published
    PubMed ID: 12648212
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; EXPRESSION ; tumor ; carcinoma ; CELL ; Germany ; human ; MICROSCOPY ; PROTEIN ; PROTEINS ; EPITHELIA ; TISSUE ; TISSUES ; PRIMARY CULTURES ; immunohistochemistry ; metastases ; REGION ; REGIONS ; SURFACE ; MONOCLONAL-ANTIBODIES ; CARCINOMAS ; squamous cell carcinoma ; pathology ; epidermis ; PERMEABILITY BARRIER ; TIGHT JUNCTIONS ; LAYER ; CYTOKERATINS ; MAMMALIAN-TISSUES ; electron microscopy ; FREEZE-FRACTURE ; HASSALLS CORPUSCLES ; HUMAN EPIDERMIS ; NORMAL HUMAN THYMUS ; stratified epithelia,tight junctions,occludin,claudins,squamous cell carcinoma,thymus,Hassall's corp
    Abstract: Tight junctions (TJs), hallmark structures of one-layered epithelia and of endothelia, are of central biological importance as intramembranous "fences" and as hydrophobic "barriers" between lumina represented by liquid- or gas-filled spaces on the one hand and the mesenchymal space on the other. They have long been thought to be absent from stratified epithelia. Recently, however, constitutive TJ proteins and TJ-related structures have also been identified in squamous stratified epithelia, including the epidermis, where they occur in special positions, most prominently in the uppermost living epidermal cell layer, the stratum granulosum. Much to our surprise, however, we have now also discovered several major TJ proteins (claudins 1 and 4, occludin, cingulin, symplekin, protein ZO-1) and TJ-related structures in specific positions of formations of epithelium-derived tissues that lack any lumen and do not border on luminal or body surfaces. Using immunohistochemistry and electron microscopy we have localized TJ proteins and structures in peripheral cells of the Hassall's corpuscles of human and bovine thymi as well as in specific central formations of tumor nests in squamous cell carcinomas, including the so-called "horn pearls". Such structures have even been found in carcinoma metastases. In carcinomas, they often seem to separate certain tumor regions from others or from stroma. The structural significance and the possible functional relevance of the locally restricted synthesis of TJ proteins and of the formations of TJ-related structures are discussed. It is proposed to include the determination of the presence or absence of such proteins and structures in the diagnostic program of tumor pathology
    Type of Publication: Journal article published
    PubMed ID: 14533737
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; Germany ; human ; CDNA ; GENE ; GENES ; HYBRIDIZATION ; PROTEIN ; PROTEINS ; transcription ; FAMILY ; TRANSCRIPTION FACTOR ; primary ; DOMAIN ; BINDING ; MEMBER ; MEMBERS ; SEQUENCE ; SEQUENCES ; chromosome ; MOUSE ; TRANSCRIPTION FACTORS ; IDENTIFICATION ; IN-SITU ; AMPLIFICATION ; PROMOTER ; ELEMENTS ; HEAT-SHOCK ; DATABASE ; REGION ; FIBER ; REGIONS ; keratin ; isolation ; DOMAINS ; GENE DOMAIN ; FOLLICLE ; HAIR-FOLLICLES ; CLUSTER ; HUMAN TYPE-I ; PSEUDOGENES ; CALCIUM-BINDING PROTEIN ; HOXC13 ; cDNA,gene expression,hair follicle,in situ hybridization,keratin ; CYSTEINE-RICH PROTEINS ; HUMAN-CHROMOSOME 21
    Abstract: Analysis of the EBI/GeneBank database using nonhuman hair keratin associated protein (KAP) gene sequences as a query resulted in the identification of two human KAP gene domains on chromosome 21, one of which, located at 21q22.1, has recently been characterized. The second domain presented here, an approximately 90 kb domain on chromosome 21q23, harbored 16 KAP genes and two KAP pseudogenes. By comparison with known sheep and mouse KAP families, these genes could be assigned to two KAP families, KAP10 and KAP12, with the KAP10 family (12 members) being distinctly larger than the KAP12 family (four members). Systematic cDNA/3' rapid amplification of cDNA ends isolation studies using human scalp mRNA led to the identification of eight KAP10 and two KAP12 cDNA sequences. In situ hybridization analyses of human anagen hair follicles using specific 3'-noncoding sequences of the various KAP10/KAP12 genes revealed mRNA expression of nearly all KAP10 and KAP12 members exclusively in a narrow region of the middle portion of the hair fiber cuticle. Bioinformatic analyses of the promoter regions of the KAP10/KAP12 genes demonstrated several enhancer elements that were present in nearly all of the KAP genes. Primary among these were binding elements for the ETS, heat shock factor, AML, and HOX families of transcription factors
    Type of Publication: Journal article published
    PubMed ID: 14962103
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: RECEPTOR ; CELLS ; EXPRESSION ; GROWTH ; CELL ; Germany ; human ; PROSTATE ; TOOL ; GENE ; DIFFERENTIATION ; COMPLEX ; COMPLEXES ; MOTIFS ; FAMILY ; MARKER ; BINDING ; MEMBER ; MEMBERS ; SEQUENCE ; TYPE-1 ; TARGET ; ELEMENT ; ASSAY ; VECTOR ; MOBILITY ; PROMOTER ; ELEMENTS ; keratin ; RESPONSIVE ELEMENT ; FOLLICLE ; HAIR-FOLLICLES ; HUMAN SKIN ; CONSTITUTIVE EXPRESSION ; HUMAN TYPE-I ; ABSENCE ; MOTIF ; keratins ; HAIR FOLLICLE ; HOMOLOGY ; adrogens ; ANTIGEN GENE ; DERMAL PAPILLA CELLS ; IMMUNOCYTOCHEMICAL LOCALIZATION
    Abstract: Previous work had shown that most members of the complex human hair keratin family were expressed in terminal scalp hairs. An exception to this rule was the type I hair keratin hHa7, which was only detected in some but not all vellus hairs of the human scalp (Langbein et al, 1999). Here we show that hHa7 exhibits constitutive expression in medullary cells of all types of male and female sexual hairs. Medullated beard, axillary, and pubic hairs arise during puberty from small, unmedullated vellus hairs under the influence of circulating androgens. This suggested an androgen-controlled expression of the hHa7 gene. Further evidence for this assumption was provided by the demonstration of androgen receptor (AR) expression in the nuclei of medullary cells of beard hairs. Moreover, homology search for the semipalindromic androgen receptor-binding element (ARE) consensus sequence GG(A)/(T)ACAnnnTGTTCT in the proximal hHa7 promoter revealed three putative ARE motifs. Electrophoretic mobility shift assays demonstrated the specific binding of AR to all three hHa7 AREs. Their function as AR-responsive elements, either individually or in concert within the hHa7 promoter, could be further confirmed by transfection studies with or without an AR expression vector in PtK2 and prostate PC3-Arwt cells, respectively in the presence or absence of a synthetic androgen. Our study detected hHa7 as the first gene in hair follicle trichocytes whose expression appears to be directly regulated by androgens. As such, hHa7 represents a marker for androgen action on hair follicles and might be a suitable tool for investigations of androgen-dependent hair disorders
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: GLAND ; GENE FAMILY ; human ; FAMILY ; GENE ; MEMBER ; keratin ; FAMILIES
    Type of Publication: Meeting abstract published
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CELLS ; EXPRESSION ; CELL-PROLIFERATION ; Germany ; human ; DIFFERENTIATION ; TISSUE ; antibodies ; antibody ; PATTERNS ; gene expression ; NUMBER ; HUMAN GENOME ; LENGTH ; cytoskeleton ; EPIDERMAL DIFFERENTIATION ; intermediate filaments ; keratin ; SEGMENTS ; GENE DOMAIN ; human hair follicle ; INTERMEDIATE FILAMENT PROTEINS ; CYTOKERATIN EXPRESSION ; INNER-ROOT-SHEATH ; COMPARTMENTS ; RE ; IV ; GLAND ; EPITHELIAL KERATIN ; DUCT CELLS ; IMMUNOHISTOCHEMICAL ANALYSIS ; HYPERPROLIFERATION-ASSOCIATED KERATINS
    Abstract: In this study, we show that a novel human type II epithelial keratin, K1b, is exclusively expressed in luminal duct cells of eccrine sweat glands. Taking this luminal K1b expression as a reference, we have used antibodies against a plethora of epithelial keratins to systematically investigate their expression in the secretory globule and the two-layered sweat duct, which was divided into the intraglandular, intradermal, and intraepidermal (acrosyringium) segments, the latter being further subdivided into the sweat duct ridge and upper intraepidermal duct. We show that (i) each of the eccrine sweat gland tissue compartments expresses their own keratin patterns, (ii) the peripheral and luminal duct layers exhibit a sequential keratin expression, with both representing self-renewing cell layers, (iii) the intradermal duct and the sweat duct ridge display hitherto unknown length variations, and (iv) out of all cell layers, the luminal cell layer is the most robust layer and expresses the highest number of keratins, these being concentrated at the apical side of the cells to form the cuticle. We provide evidence that the cellular and intercellular properties of the peripheral and the luminal layers reflect adaptations to different functions
    Type of Publication: Journal article published
    PubMed ID: 16117782
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...