Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 1572-879X
    Keywords: chemical waves ; NO reduction ; Rh ; Pt ; microstructured composite surfaces ; dynamical imaging ; scanning photoemission microscopy ; SPEM ; photoemission electron microscopy ; PEEM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The catalytic reduction of NO by hydrogen is investigated at (T = 650 K and (p≈10-6 mbar on a microstructured Rh/Pt(100) surface consisting of Pt(100) domains surrounded by a 600 Åthick Rh film. Synchrotron radiation scanning photoemission microscopy (SPEM), using photons focused into a spot of less than 0.2 μm diameter, is employed as a spatially and chemically resolving in situ technique. The chemical waves which arise in the bistable system NO+H2/Rh are imaged with SPEM monitoring the N 1s and O 1s photoelectrons. The reaction fronts initiate transitions from an inactive oxygen-covered surface (ΘO≈0.25 ML) to a reactive nitrogen-covered surface (ΘN≈0.06 ML). At the Pt/Rh interface, synergetic effects can be observed: the chemical waves on the Rh film nucleate preferentially at the Pt/Rh interface. This nucleation is poisoned by carbon contamination on the Pt area but is prevented in the vicinity of the Pt/Rh interface by the adjacent clean Rh film. No segregation of Pt to the surface was observed for the 600 Å thick Rh film.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...