Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-12
    Description: The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews-Hanna, Jeffrey C -- Asmar, Sami W -- Head, James W 3rd -- Kiefer, Walter S -- Konopliv, Alexander S -- Lemoine, Frank G -- Matsuyama, Isamu -- Mazarico, Erwan -- McGovern, Patrick J -- Melosh, H Jay -- Neumann, Gregory A -- Nimmo, Francis -- Phillips, Roger J -- Smith, David E -- Solomon, Sean C -- Taylor, G Jeffrey -- Wieczorek, Mark A -- Williams, James G -- Zuber, Maria T -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):675-8. doi: 10.1126/science.1231753. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA. jcahanna@mines.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223393" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-10
    Description: Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins with up to twice the diameter of similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner solar system impact bombardment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miljkovicc, Katarina -- Wieczorek, Mark A -- Collins, Gareth S -- Laneuville, Matthieu -- Neumann, Gregory A -- Melosh, H Jay -- Solomon, Sean C -- Phillips, Roger J -- Smith, David E -- Zuber, Maria T -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):724-6. doi: 10.1126/science.1243224.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Physique du Globe de Paris, Sorbonne Paris Cite, Universite Paris Diderot, Case 7011, Lamarck A, 5, 35 rue Helene Brion, 75205 Paris cedex 13, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24202170" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-04
    Description: The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrews-Hanna, Jeffrey C -- Besserer, Jonathan -- Head, James W 3rd -- Howett, Carly J A -- Kiefer, Walter S -- Lucey, Paul J -- McGovern, Patrick J -- Melosh, H Jay -- Neumann, Gregory A -- Phillips, Roger J -- Schenk, Paul M -- Smith, David E -- Solomon, Sean C -- Zuber, Maria T -- England -- Nature. 2014 Oct 2;514(7520):68-71. doi: 10.1038/nature13697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, Colorado 80401, USA. ; Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, USA. ; Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA. ; Planetary Science Directorate, Southwest Research Institute, Boulder, Colorado 80302, USA. ; Lunar and Planetary Institute, Houston, Texas 77058, USA. ; Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, USA. ; Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. ; Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA. ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA. ; 1] Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC 20015, USA [2] Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25279919" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-23
    Description: Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury's topography occurred after the earliest phases of the planet's geological history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, Maria T -- Smith, David E -- Phillips, Roger J -- Solomon, Sean C -- Neumann, Gregory A -- Hauck, Steven A 2nd -- Peale, Stanton J -- Barnouin, Olivier S -- Head, James W -- Johnson, Catherine L -- Lemoine, Frank G -- Mazarico, Erwan -- Sun, Xiaoli -- Torrence, Mark H -- Freed, Andrew M -- Klimczak, Christian -- Margot, Jean-Luc -- Oberst, Jurgen -- Perry, Mark E -- McNutt, Ralph L Jr -- Balcerski, Jeffrey A -- Michel, Nathalie -- Talpe, Matthieu J -- Yang, Di -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):217-20. doi: 10.1126/science.1218805. Epub 2012 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. zuber@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22438510" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-12
    Description: High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wieczorek, Mark A -- Neumann, Gregory A -- Nimmo, Francis -- Kiefer, Walter S -- Taylor, G Jeffrey -- Melosh, H Jay -- Phillips, Roger J -- Solomon, Sean C -- Andrews-Hanna, Jeffrey C -- Asmar, Sami W -- Konopliv, Alexander S -- Lemoine, Frank G -- Smith, David E -- Watkins, Michael M -- Williams, James G -- Zuber, Maria T -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):671-5. doi: 10.1126/science.1231530. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Physique du Globe de Paris, Sorbonne Paris Cite, Universite Paris Diderot, Case 7071, Lamarck A, 5, rue Thomas Mann, 75205 Paris Cedex 13, France. wieczor@ipgp.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223394" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-23
    Description: Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, Roger J -- Davis, Brian J -- Tanaka, Kenneth L -- Byrne, Shane -- Mellon, Michael T -- Putzig, Nathaniel E -- Haberle, Robert M -- Kahre, Melinda A -- Campbell, Bruce A -- Carter, Lynn M -- Smith, Isaac B -- Holt, John W -- Smrekar, Suzanne E -- Nunes, Daniel C -- Plaut, Jeffrey J -- Egan, Anthony F -- Titus, Timothy N -- Seu, Roberto -- New York, N.Y. -- Science. 2011 May 13;332(6031):838-41. doi: 10.1126/science.1203091. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA. roger@boulder.swri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512003" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; Cold Temperature ; *Dry Ice ; Extraterrestrial Environment ; Ice ; *Mars ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-23
    Description: Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 +/- 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, David E -- Zuber, Maria T -- Phillips, Roger J -- Solomon, Sean C -- Hauck, Steven A 2nd -- Lemoine, Frank G -- Mazarico, Erwan -- Neumann, Gregory A -- Peale, Stanton J -- Margot, Jean-Luc -- Johnson, Catherine L -- Torrence, Mark H -- Perry, Mark E -- Rowlands, David D -- Goossens, Sander -- Head, James W -- Taylor, Anthony H -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):214-7. doi: 10.1126/science.1218809. Epub 2012 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22438509" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-01
    Description: High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull's-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Melosh, H J -- Freed, Andrew M -- Johnson, Brandon C -- Blair, David M -- Andrews-Hanna, Jeffrey C -- Neumann, Gregory A -- Phillips, Roger J -- Smith, David E -- Solomon, Sean C -- Wieczorek, Mark A -- Zuber, Maria T -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1552-5. doi: 10.1126/science.1235768. Epub 2013 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA. jmelosh@purdue.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23722426" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-12
    Description: Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuber, Maria T -- Smith, David E -- Watkins, Michael M -- Asmar, Sami W -- Konopliv, Alexander S -- Lemoine, Frank G -- Melosh, H Jay -- Neumann, Gregory A -- Phillips, Roger J -- Solomon, Sean C -- Wieczorek, Mark A -- Williams, James G -- Goossens, Sander J -- Kruizinga, Gerhard -- Mazarico, Erwan -- Park, Ryan S -- Yuan, Dah-Ning -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):668-71. doi: 10.1126/science.1231507. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. zuber@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23223395" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-09
    Description: Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (〈500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morgan, Gareth A -- Campbell, Bruce A -- Carter, Lynn M -- Plaut, Jeffrey J -- Phillips, Roger J -- New York, N.Y. -- Science. 2013 May 3;340(6132):607-10. doi: 10.1126/science.1234787. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Earth and Planetary Studies, Smithsonian Institution, Washington, DC, USA. morganga@si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470730" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Floods ; *Mars ; Radar ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...