Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Pseudomonas denitrificans ; Denitrification ; Nitrite accumulation ; Formate ; Nitrite reductase ; Nitrate reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The growth of Pseudomonas denitrificans ATCC 13867 under denitrifying conditions was significantly stimulated by adding an appropriate amount of formate (2.5 mM or above) to the growth medium. The accumulation of nitrite in the culture was markedly depressed so long as formate remained in the culture above a certain level. Cellular activities of enzymes participating in denitrification also changed. The cells grown in the presence of formate exhibited a lower nitrate reductase activity and, in contrast, a higher nitrite reductase activity than the cells grown without added formate.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 141 (1985), S. 364-370 
    ISSN: 1432-072X
    Keywords: Nitrogen fixation ; Denitrification ; Associative symbiosis ; Acetylene reduction ; Nitrous oxide formation ; Azospirillum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A model system is described where Azospirillum and germinated wheat seeds were grown in association for a week and then assayed for nitrogen fixation (C2H2-reduction) and denitrification (N2O-formation) activities. The association performed C2H2-reduction and N2O-formation under microaerobic conditions. Both activities were measurable after already 3–5 h of incubation with substantial rates and were strictly dependent on the presence of both plants and bacteria. During the week of the growth of the association, the bacteria had lived exclusively from the carbon compounds supplied by the roots of the plants. C2H2-reduction activity by the association was more or less the same with all the Azospirillum brasilense strains, but lower with A. lipoferum and with the A. amazonense strains tested. Two nitrogenase negative mutants of Azospirillum brasilense showed virtually no activity in the association. C2H2-reduction activity was strongly dependent on the growth temperature of the association. Denitrification (N2O-formation) was high also at higher temperatures and at pH-values in the medium around 7.8 but not at neutrality and was strictly dependent on nitrate. The Azospirillum strain used strongly determined the rate of the N2O-formation in the association. It is suggested that Azospirillum may be beneficial to crops particularly under tropical conditions.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Denitrification ; Pseudomonas putida ; Nitrate reductase ; Periplasm ; Aerobic nitrate respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A strain of Pseudomonas putida that can express a nitrate reductase that is located in the periplasmic compartment was isolated from freshwater. The enzyme was active in vivo during arginine fermentation and at the onset of oxygen limitation in batch cultures. The activity of the enzyme increased the yield of bacteria following fermentative growth under anoxic conditions with arginine, but nitrate reduction did not support growth on nonfermentable carbon substrates under anoxic conditions. Cells expressing the periplasmic nitrate reductase were capable of reducing nitrate in the presence of oxygen. Nitrate reduction under oxic conditions was clearly coupled to a respiratory electron transport chain because: (1) the process was sensitive to the respiratory inhibitors rotenone and 2-n-heptyl-4-hydroxyquinoline N-oxide, and (2) membrane-bound and periplasmic cytochromes were involved. This is the first report of the presence of a periplasmic nitrate reductase in a member of the γ proteobacteria.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Denitrification ; Nitrite and NO formation ; Nitrogenase inhibition ; EPR ; Iron-nitrosyl complex formation ; Rhodopseudomonas sphaeroides f. sp. denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In cells of Rhodopseudomonas sphaeroides f. sp. denitrificans nitrite and nitric oxide, the products of denitrification, inhibit activity of nitrogenase enzyme. Ferredoxin-linked CO2 fixation, with H2 as a reductant, was also inhibited by nitrite and NO in denitrifying cells. EPR spectroscopy of cell preparations treated with NO showed that it reacts with non-haem iron-sulphur proteins to form iron-nitrosyl complexes. Nitrite also reacts with these iron-sulphur proteins, but the formation of ironnitrosyl complexes was dependent on the presence of dithionite. Since nitrite is reduced to NO by dithionite it is likely that nitrogenase and CO2 fixation reactions are inhibited not only by nitrite itself, but also by nitric oxide.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Denitrification ; Growth yield measurements ; Nitrate respiration ; Nitrogen fixation ; Proton translocations in respirations ; Azospirillum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract For Azospirillum brasilense Sp7, the energy transformation efficiencies were measured in anaerobic respirations with either nitrate, nitrite or nitrous oxide as respiratory electron acceptors by determining the maximal molar growth yields and the H+-translocations using the oxidant pulse method. In continuous cultures grown with malate limiting, the maximal molar growth yields (Y s max -values) were essentially the same with O2 or N2O but were 1/3 and 2/3 lower with NO 2 - or NO 3 - , respectively, as respiratory electron acceptors. Both the maximal molar growth yields and the maintenance energy coefficients were surprisingly high when Azospirillum was grown with nitrite as the sole electron acceptor and source for N-assimilation. Growth under N2-fixing conditions drastically reduced the Y s max -values in the N2O and O2-respiring cells. In the H+-translocation measurements, the $$\vec H^ + $$ /oxidant ratios were 5.6 for O2→H2O, 2.5–2.8 for NO 3 - →NO 2 - , 2.2 for NO 2 - →N2O and 3.1 for N2O→N2 respirations when the cells were preincubated with valinomycin and K+. All the values were enhanced when the experiments were performed with valinomycin plus methyltriphenylphosphonium (=TPMP+) cation. The uncoupler carbonyl cyanide-m-chlorophenyl-hydrazone diminished the H+-excretion indicating that this translocation was due to vectorial flow across the membrane. In the absence of any ionophore, nitrate and nitrite respirations were accompanied by a H+-uptake $$(NO_3^ - \to N_2 = - 2.9 \vec H^ + /NO_3^ - and NO_2^ - \to N_2 = - 2.5 \vec H^ + /NO_2^ - )$$ . Any significant H+-translocation could not be detected in N2O- and O2-respirations under these conditions. It is concluded that nitrate reduction proceeds inside the cytoplasmic membrane, whereas nitrite is reduced extramembraneously. The data are not conclusive for the location of nitrous oxide reductase. The maximal molar growth yield determinations and the absence of any H+-uptake in untreated cells indicate a cytoplasmic orientation of the enzyme similar to the terminal cytochrome oxidase of respiration. The low H+-extrusion values for N2O-respiration compared to O2-respiration in cells treated with valinomycin plus TPMP+ are, however, not in accord with such an interpretation.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Pseudomonas sp. ; Toluene ; Xylene ; Dimethylbenzene ; Aromatic compounds ; Denitrification ; Nitrate reduction ; Anaerobic degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A bacterium tentatively identified as a Pseudomonas sp. was isolated from a laboratory aquifer column in which toluene was degraded under denitrifying conditions. The organism mineralized toluene in pure culture in the absence of molecular oxygen. In carbon balance studies using [ring-UL-14C]toluene, more than 50% of the radioactivity was recovered as 14CO2. Nitrate and nitrous oxide served as electron acceptors for toluene mineralization. The organism was also able to degrade m-xylene, benzoate, benzaldehyde, p-cresol, p-hydroxybenzaldehyde, p-hydroxybenzoate and cyclohexanecarboxylic acid in the absence of molecular oxygen.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Denitrification ; Nitrate reductase ; Thiosphaera pantotropha ; Redox balance ; Periplasm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstracts The periplasmic nitrate reductase was assayed in intact cells of Thiosphaera pantotropha, after aerobic growth with either malate, succinate, acetate, butyrate or caproate present as sole carbon source. The level of enzyme activity was largely dependent upon carbon source and was lowest on malate and succinate, intermediate on acetate and highest on butyrate and caproate. The presence or absence of nitrate did not effect enzyme activity. The results indicate that, during aerobic growth, activity of the periplasmic nitrate reductase increases with the extent of reduction of the carbon substrate.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Pseudomonas nautica 617 ; Marine bacterium ; Denitrification ; Heptadecane ; oxygen ; Nitrate and nitrite reductases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The denitrifying marine bacterium, Pseudomonas nautica 617, can grow on lactate aerobically or anaerobically in presence of nitrate with generation times of 1.5 and 3 h respectively. The growth on heptadecane occurs only in presence of oxygen whatever its concentration with a genrration time of 8.5 h. The influence of oxygen, carbon sources (lactate or heptadecane) and nitrate was examined on O2, NO3 -, NO2 - consumption, on nitrate and nitrite reductases activities, on cell yields, and on the ratio of CO2 produced per unit of biomass. Pseudomonas nautica metabolizes hydrocarbons under denitrifying conditions in the presence of oxygen. Nitrate and nitrite are used during growth on lactate and heptadecane up to oxygen concentrations corresponding to 50 and 30% of air-saturation, respectively. When growth on n-alkane was not oxygen-limited (above 50% of air-saturation) the catabolism decreases in favour of carbon incorporation into the cell. Nitrate and nitrite reductases were strongly inhibited after 20% of airsaturation in the presence of lactate as growth substrate. With n-alkane, only the nitrate reductase activity was greatly reduced.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Key words Cytochrome cd1 ; Nitrite reductase ; Nitrous ; oxide reductase ; Denitrification ; Thiobacillus ; denitrificans ; Pseudomonas stutzeri ; DNA hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cytochrome cd 1-nitrite reductase and nitrous oxide reductase of Thiobacillus denitrificans were purified and characterized by biochemical and immunochemical methods. In contrast to the generally soluble nature of the denitrification enzymes, these two enzymes were isolated from the membrane fraction of T. denitrificans and remained active after solubilization with Triton X-100. The properties of the membrane-derived enzymes were similar to those of their soluble counterparts from the same organism. Nitrous oxide reductase activity was inhibited by acetylene. Nitrite reductase and nitrous oxide reductase cross-reacted with antisera raised against the soluble enzymes from Pseudomonas stutzeri. The nirS, norBC, and nosZ genes encoding the cytochrome cd 1-nitrite reductase, nitric oxide reductase, and nitrous oxide reductase, respectively, from P. stutzeri hybridized with genomic DNA from T. denitrificans. Cross-reactivity and similar N-terminal amino acid and gene sequences suggest that the primary structures of the Thiobacillus enzymes are homologous to the soluble proteins from P. stutzeri.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Key words Anaerobic degradation ; Denitrification ; Halobenzoate ; Dehalogenation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A denitrifying bacterium was isolated from a river sediment after enrichment on 3-chlorobenzoate under anoxic, denitrifying conditions. The bacterium, designated strain 3CB-1, degraded 3-chlorobenzoate, 3-bromobenzoate, and 3-iodobenzoate with stoichiometric release of halide under conditions supporting anaerobic growth by denitrification. The 3-halobenzoates and 3-hydroxybenzoate were used as growth substrates with nitrate as the terminal electron acceptor. The doubling time when growing on 3-halobenzoates ranged from 18 to 25 h. On agar plates with 1 mM 3-chlorobenzoate as the sole carbon source and 30 mM nitrate as the electron acceptor, strain 3CB-1 formed small colonies (1–2 mm in diameter) in 2 to 3 weeks. Anaerobic degradation of both 3-chlorobenzoate and 3-hydroxybenzoate was dependent on nitrate as an electron acceptor and resulted in nitrate reduction corresponding to the stoichiometric values for complete oxidation of the substrate to CO2. 3-Chlorobenzoate was not degraded in the presence of oxygen. 3-Bromobenzoate and 3-iodobenzoate were also degraded under denitrifying conditions with stoichiometric release of halide, but 3-fluorobenzoate was not utilized by the bacterium. Utilization of 3-chlorobenzoate was inducible, while synthesis of enzymes for 3-hydroxybenzoate degradation was constitutively low, but inducible. Degradation was specific to the position of the halogen substituent, and strain 3CB-1 did not utilize 2- or 4-chlorobenzoate.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...