Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GENES  (13)
Collection
Keywords
  • 1
    Keywords: CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; human ; PATHWAY ; GENE ; GENE-EXPRESSION ; GENES ; DIFFERENTIATION ; TUMORS ; COMPLEX ; COMPLEXES ; INDUCTION ; CONTRAST ; SKIN ; LOCALIZATION ; BENIGN ; keratin ; skin tumors ; epidermis ; FOLLICLE ; HAIR-FOLLICLES ; HUMAN TYPE-I ; MATRIX ; BETA-CATENIN EXPRESSION ; CORTEX ; HAIR FOLLICLE ; hair follicles,human,transcription factors,tumors ; HOXC13 ; INVOLUCRIN
    Abstract: Human hair follicles exhibit a complex pattern of sequential hair keratin expression in the hair matrix, cuticle, and cortex. In pilomatricomas, that is, benign skin tumors thought to arise from germinative matrix cells of the hair follicle and retaining morphological signs of cortical differentiation, this differential hair keratin pattern has been shown to be faithfully preserved in the lower and upper transitional cell compartments of the tumors. Here we show that also the co-expression of hair keratin hHa5 with its regulatory nuclear homeoprotein HOXC13 in matrix cells of the hair follicle is maintained in lower transitional cells of pilomatricomas. In contrast, the nuclear co-expression of LEF1 and beta-catenin, which in the hair follicle has been postulated to initiate cortex cell differentiation through the induction of hair keratin hHa1 expression (Merill et al, Genes Dev 15:1688-1705, 2001), is not preserved in upper transitional cells of pilomatricomas. Although these cells correctly express hHa1, they are completely devoid of LEF1 and nuclear LEF1/beta-catenin co-expression is shifted to a subpopulation of hair keratin-free basaloid cells of the tumors. These data imply that unlike the normal hair follicle, cortical differentiation in pilomatricomas is not under the control of the canonical Wnt signaling pathway
    Type of Publication: Journal article published
    PubMed ID: 15140206
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: RECEPTOR ; CELLS ; EXPRESSION ; GROWTH ; CELL ; Germany ; human ; MODEL ; GENE ; GENES ; transcription ; LIGAND ; SKIN ; BIOLOGY ; fibroblasts ; TARGET ; IN-SITU ; MONOCLONAL-ANTIBODIES ; EPITHELIAL-CELLS ; INDIVIDUALS ; TARGETS ; RECEPTORS ; DISSECTION ; SERUM ; mRNA ; hair ; USA ; THYROTROPIN RECEPTOR ; HPA axis ; CONNECTIVE-TISSUE ; CORTICOTROPIN-RELEASING HORMONE ; FUNCTIONAL-ROLE ; PIGMENTARY UNIT ; SMOOTH MUSCLE ACTIN ; TSH RECEPTOR
    Abstract: Pituitary thyroid-stimulating hormone (TSH) regulates thyroid hormone synthesis via receptors (TSH-R) expressed on thyroid epithelial cells. As the hair follicle (HF) is uniquely hormone-sensitive and, hypothyroidism with its associated, increased TSH serum levels clinically can lead to hair loss, we asked whether human HFs are a direct target for TSH. Here, we report that normal human scalp skin and microdissected human HFs express TSH-R mRNA. TSH-R- like immunoreactivity is limited to the mesenchymal skin compartments in situ. TSH may alter HF mesenchymal functions, as it upregulates alpha-smooth muscle actin expression in HF fibroblasts. TSH-R stimulation by its natural ligand in organ culture changes the expression of several genes of human scalp HFs (for example keratin K5), upregulates the transcription of classical TSH target genes and enhances cAMP production. Although the functional role of TSH in human HF biology awaits further dissection, these findings document that intracutaneous TSH-Rs are fully functional in situ and that HFs of female individuals are direct targets for nonclassical, extrathyroidal TSH bioregulation. This suggests that organ-cultured scalp HFs provide an instructive and physiologically relevant human model for exploring nonclassical functions of TSH, in and beyond the skin
    Type of Publication: Journal article published
    PubMed ID: 19052559
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: EXPRESSION ; Germany ; PATHWAY ; COMMON ; COHORT ; EPIDEMIOLOGY ; GENE ; GENES ; DIFFERENTIATION ; PATIENT ; FAMILY ; DISORDER ; MOUSE ; IDENTIFICATION ; MUTATION ; MUTATIONS ; PHENOTYPE ; CHROMOSOMAL LOCALIZATION ; molecular epidemiology ; HETEROGENEITY ; DISORDERS ; FAMILIES ; USA ; GENOMIC STRUCTURE ; GENETIC-HETEROGENEITY ; EPIDERMIS-TYPE LIPOXYGENASES ; 12R-LIPOXYGENASE ; 12(R)-LIPOXYGENASE ALOX12B ; ERYTHRODERMA
    Abstract: In recent years several new genes for autosomal recessive congenital ichthyosis (ARCI) have been identified. However, little is known about the molecular epidemiology and pathophysiology of this genetically and clinically heterogeneous group of severe disorders of keratinization. ARCI is characterized by intense scaling of the whole integument often associated with erythema. We and others have shown that mutations in ALOX12B and ALOXE3, coding for the lipoxygenases 12R-LOX and eLOX-3 predominantly synthesized in the epidermis, can underlie this rare condition. Here we have surveyed a large group of 250 patients with ARCI for mutations in these two genes. We have identified 11 different previously unreported mutations in ALOX12B and ALOXE3 in 21 ARCI patients from 19 unrelated families and demonstrated that mutations in the two genes are the second most common cause for ARCI in this cohort of patients. Examination of the molecular data revealed allelic heterogeneity for ALOX12B and two mutational hotspots in ALOXE3. Functional analysis of all missense mutations and a splice site mutation demonstrated that complete loss of function of the enzymes underlies the phenotype. Our findings further establish the pivotal role of the 12-lipoxygenase pathway during epidermal differentiation. Journal of Investigative Dermatology (2009) 129, 1421-1428; doi:10.1038/jid.2008.409; published online 8 January 2009
    Type of Publication: Journal article published
    PubMed ID: 19131948
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: CELLS ; EXPRESSION ; Germany ; human ; CLONING ; GENE ; GENES ; HYBRIDIZATION ; DIFFERENTIATION ; DOMAIN ; IN-SITU ; PATTERNS ; gene expression ; cytoskeleton ; intermediate filaments ; keratin ; LAYER ; CELLS FLUGELZELLEN ; CUTICLE CELLS ; CYTOKERATINS ; GENE DOMAIN ; human hair follicle ; HUXLEY ; MAMMALIAN-TISSUES
    Abstract: In this study we report on the cloning of two novel human type II keratin cDNAs, K6irs3 and K6irs4, which were specifically expressed in the inner root sheath of the hair follicle. Together with the genes of two previously described type II inner root sheath keratins, K6irs1 and K6irs2, the K6irs3 and K6irs4 genes were subclustered in the type II keratin/hair keratin gene domain on chromosome 12q13. Evolutionary tree analysis using all known type II epithelial and hair keratins revealed that the K6irs1-4 formed a branch separate from the other epithelial and hair keratins. RNA in situ hybridization and indirect immunofluorescence studies of human hair follicles, which also included the K6irs2 keratin, demonstrated that both K6irs2 and K6irs3 were specifically expressed in the inner root sheath cuticle, but showed a different onset of expression in this compartment. Whereas the K6irs3 expression began in the lowermost bulb region, that of K6irs2 was delayed up to the height of the apex of the dermal papilla. In contrast, the K6irs4 keratin was specifically expressed in the Huxley layer. Moreover, K6irs4 was ideally suited to further investigate the occurrence of Flugelzellen, i.e., Huxley cells, characterized by horizontal cell extensions that pass through the Henle layer, abut upon the companion layer, and form desmosomal connections with the surrounding cells. Previously, we detected Flugelzellen only in the region along the differentiated Henle layer. Using the Huxley-cell-specific K6irs4 antiserum, we now demonstrate this cell type to be clearly apposed to the entire Henle layer. We provide evidence that Flugelzellen penetrate the Henle layer actively and may play a role in conferring plasticity and resilience to the otherwise rigid upper Henle layer
    Type of Publication: Journal article published
    PubMed ID: 12648212
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; Germany ; human ; CDNA ; GENE ; GENES ; HYBRIDIZATION ; PROTEIN ; PROTEINS ; transcription ; FAMILY ; TRANSCRIPTION FACTOR ; primary ; DOMAIN ; BINDING ; MEMBER ; MEMBERS ; SEQUENCE ; SEQUENCES ; chromosome ; MOUSE ; TRANSCRIPTION FACTORS ; IDENTIFICATION ; IN-SITU ; AMPLIFICATION ; PROMOTER ; ELEMENTS ; HEAT-SHOCK ; DATABASE ; REGION ; FIBER ; REGIONS ; keratin ; isolation ; DOMAINS ; GENE DOMAIN ; FOLLICLE ; HAIR-FOLLICLES ; CLUSTER ; HUMAN TYPE-I ; PSEUDOGENES ; CALCIUM-BINDING PROTEIN ; HOXC13 ; cDNA,gene expression,hair follicle,in situ hybridization,keratin ; CYSTEINE-RICH PROTEINS ; HUMAN-CHROMOSOME 21
    Abstract: Analysis of the EBI/GeneBank database using nonhuman hair keratin associated protein (KAP) gene sequences as a query resulted in the identification of two human KAP gene domains on chromosome 21, one of which, located at 21q22.1, has recently been characterized. The second domain presented here, an approximately 90 kb domain on chromosome 21q23, harbored 16 KAP genes and two KAP pseudogenes. By comparison with known sheep and mouse KAP families, these genes could be assigned to two KAP families, KAP10 and KAP12, with the KAP10 family (12 members) being distinctly larger than the KAP12 family (four members). Systematic cDNA/3' rapid amplification of cDNA ends isolation studies using human scalp mRNA led to the identification of eight KAP10 and two KAP12 cDNA sequences. In situ hybridization analyses of human anagen hair follicles using specific 3'-noncoding sequences of the various KAP10/KAP12 genes revealed mRNA expression of nearly all KAP10 and KAP12 members exclusively in a narrow region of the middle portion of the hair fiber cuticle. Bioinformatic analyses of the promoter regions of the KAP10/KAP12 genes demonstrated several enhancer elements that were present in nearly all of the KAP genes. Primary among these were binding elements for the ETS, heat shock factor, AML, and HOX families of transcription factors
    Type of Publication: Journal article published
    PubMed ID: 14962103
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: ANGIOGENESIS ; CANCER ; EXPRESSION ; INVASION ; proliferation ; SURVIVAL ; tumor ; CELL-PROLIFERATION ; MICROVESSEL DENSITY ; DENSITY ; GENE ; GENES ; TUMORS ; PATIENT ; ACTIVATION ; FAMILY ; prognosis ; PROGRESSION ; MUTATION ; metastases ; MELANOMA ; MUTATIONS ; ONCOGENE ; CHILDREN ; CUTANEOUS MELANOMA ; INITIATION ; BRAF ; N-RAS ; Ras ; neuroblastoma ; RE ; PATIENT SURVIVAL ; cell proliferation ; CODON ; CUTANEOUS MELANOMAS ; Ki-67 ; NEVI ; RAS MUTATIONS ; VERTICAL GROWTH-PHASE
    Abstract: Previous studies have shown frequent mutations in the BRAF (V-raf murine sarcoma viral oncogene homolog B1) or NRAS ( neuroblastoma RAS viral [V-ras] oncogene homolog) genes in cutaneous melanoma, but the relationship between these alterations and tumor cell proliferation has not been examined in human melanoma. In our study of 51 primary nodular melanomas and 18 paired metastases, we found mutations in BRAF ( codon 600, previously denoted 599) in 15 primary tumors (29%) and eight metastases (44%). The figures for NRAS mutations were 27% and 22%, respectively. Mutations in BRAF and NRAS genes were mutually exclusive in all but one case, and were maintained from primary tumors through their metastases. Mutations, however, were not associated with tumor cell proliferation by Ki-67 expression, tumor thickness, microvessel density, or vascular invasion, and there were no differences in patient survival. Although BRAF and NRAS mutations are likely to be important for the initiation and maintenance of some melanomas, other factors might be more significant for proliferation and prognosis in subgroups of aggressive melanoma
    Type of Publication: Journal article published
    PubMed ID: 16098042
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: EXPRESSION ; CELL ; Germany ; human ; GENE ; GENES ; PROTEIN ; PROTEINS ; DIFFERENTIATION ; DOMAIN ; CONTRAST ; MEMBERS ; antibodies ; antibody ; PATTERNS ; REGION ; keratin ; TERMINAL DIFFERENTIATION ; CUTICLE CELLS ; GENE DOMAIN ; human hair follicle ; MAMMALIAN-TISSUES ; FOLLICLE ; INNER-ROOT-SHEATH ; RE ; keratins ; HAIR FOLLICLE ; hair ; hair keratins ; GENE FAMILY ; EPITHELIAL CYTOKERATINS ; EXPRESSION PATTERNS ; HUMAN ANAGEN HAIR ; EPITHELIAL KERATINS ; I KERATINS
    Abstract: The recent elucidation of the human type I keratin gene domain allowed the completion of the so far only partially characterized subcluster of type I keratin genes, KRT25-KRT28 (formerly KRT25A-KRT25D), representing he counterparts of the type II inner root sheath (IRS) keratin genes, KRT71-KRT74 (encoding proteins K71-K74, formerly K6irs1-K6irs4). Here, we describe the expression patterns of the type I IRS keratin proteins K25-K28 (formerly K25irs1-K25irs4) and their mRNAs. We found that K25 (K25irs1), K27 (K25irs3), and K28 (K25irs4) occur in the Henle layer, the Huxley layer, and in the IRS cuticle. Their expression extends from the bulb region up to the points of terminal differentiation of the three layers. In contrast, K26 (K25irs2) is restricted to the upper IRS cuticle. Apart from the three IRS layers, K25 (K25irs1), K27 (K25irs3), and K28 ( K25irs4) are also present in the hair medulla. Based on previous, although controversial claims of the occurrence in the IRS of various ''classical'' epithelial keratins, we undertook a systematic study using antibodies against the presently described human epithelial and hair keratins and show that the type I keratins K25-K28 (K25irs1-K25irs4) and the type II keratins K71-K74 (K6irs1-K6irs4) represent the IRS keratins of the human hair follicle
    Type of Publication: Journal article published
    PubMed ID: 16874310
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CELLS ; EXPRESSION ; IN-VITRO ; human ; GENE ; GENES ; HYBRIDIZATION ; PROTEIN ; EPITHELIA ; MECHANISM ; mechanisms ; SKIN ; chromosome ; DISORDER ; MOUSE ; IN-SITU ; MUTATION ; etiology ; US ; INTERMEDIATE-FILAMENTS ; keratin ; DIFFERENTIAL EXPRESSION ; PRECURSORS ; LAYER ; MUCOSA ; FOLLICLE ; HAIR-FOLLICLES ; CATALOG ; hair,hair cycle,intermediate filament,keratin,skin ; INNER-ROOT-SHEATH ; ORAL-MUCOSA ; PACHYONYCHIA-CONGENITA
    Abstract: More than half of the known keratin genes (napproximate to50) are expressed in the hair follicle. An in-depth knowledge of their differential expression in this organ will help us to understand the mechanisms of its formation and cycling, and the etiology of inherited hair disorders. Keratin 6hf is a type II keratin recently shown to occur in the companion layer. We cloned the mouse ortholog and characterized its expression in skin and oral mucosa. The mK6hf gene is 9.1 kb long and located in the cluster of type II keratin genes on mouse chromosome 15, between the keratin 6 (mK6alpha/mK6beta) and hair keratin genes. In situ hybridization and protein immunolocalization showed that, in addition to the companion layer, mK6hf is expressed in the upper matrix and medulla of the anagen-stage hair. This distribution is seen for all types of mouse hairs and medullated human hairs. The distribution of keratin 6hf protein in the hair shaft mirrors that of keratin 17, and the observation of reduced levels of keratin 6hf in keratin 17 null hair argues for a direct interaction between them. mK6hf is also expressed in the nail bed epithelium and fungiform papillae of dorsal tongue epithelium. Our findings provide an additional marker for the hair matrix and medulla, and suggest that the cellular precursors for the medulla, cortex, and cuticle compartments are already spatially segregated within the hair matrix. They also have obvious implications for the epithelial alterations associated with defects in keratin 6 genes
    Type of Publication: Journal article published
    PubMed ID: 14675170
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: IRRADIATION ; Germany ; COMMON ; GENE ; GENES ; TISSUE ; RISK-FACTORS ; TISSUES ; SKIN ; IN-SITU ; NUMBER ; MUTATION ; CDKN2A ; MELANOMA ; SPORADIC PRIMARY MELANOMAS ; MUTATIONS ; MALIGNANT-MELANOMA ; CUTANEOUS MELANOMA ; RED HAIR ; MELANOCORTIN-1 RECEPTOR ; N-RAS MUTATIONS ; N-ras,melanoma,SSCP
    Abstract: We determined mutations in the BRAF, N-ras, and CDKN2A genes in 27 histologically diverse melanocytic nevi and corresponding surrounding tissues from 17 individuals. Mutations in the BRAF and N-ras gene were found in 22 nevi (81%) from 16 individuals (94%). The predominant BRAF mutation T1799A (V600E) was detected in 18 nevi; 1 nevus had a novel A1781G (D594V) mutation in the same gene and 3 nevi had mutations in codon 61 of the N-ras gene. In 4 individuals both nevi carried a BRAF mutation, whereas in 2 other individuals 1 nevus showed a BRAF mutation and the second nevus had an N-ras mutation. In 2 individuals normal skin distant from nevi showed a BRAF mutation. No mutations were detected in the CDKN2A gene. The mutations in the BRAF and N-ras genes, in this study, were not associated with histologic type, location, skin type, size, or numbers of nevi. Our results suggest that mutations in the BRAF gene and to some extent in the N-ras gene represent early somatic events that occur in melanocytic nevi. We hypothesize the dual effect of solar ultraviolet irradiation on melanoma, through mutagenesis and by increasing the number of melanocytic nevi, many of which carry a BRAF or N-ras mutation
    Type of Publication: Journal article published
    PubMed ID: 15009715
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Germany ; GENE ; GENES ; PROTEIN ; FAMILY ; DOMAIN ; polymorphism ; Jun ; CLUSTER ; RE ; hair ; PROTEIN GENES ; SIZE
    Type of Publication: Journal article published
    PubMed ID: 15999398
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...