Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AIIIDHmut), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIIIIDHmut), and WHO grade IV glioblastoma, IDH-mutant (GBMIDHmut). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AIIIDHmut and AAIIIIDHmut have lost their significance. In contrast, GBMIDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.
    Type of Publication: Journal article epub ahead of print
    PubMed ID: 29687258
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; tumor ; CELL ; Germany ; MICROSCOPY ; DIAGNOSIS ; NEW-YORK ; PROTEIN ; PROTEINS ; ADHESION MOLECULES ; cell line ; COMPONENTS ; CONSTITUTIVE TRANSMEMBRANE GLYCOPROTEIN ; CULTURED-CELLS ; DESMOCOLLIN ; desmoplakin ; desmosome ; DIFFERENTIATION ; EPITHELIA ; HUMAN PLAKOGLOBIN ; INTERMEDIATE-SIZED FILAMENTS ; meninges,meningioma,desmosome,desmocollin 3 ; meningioma ; MOLECULAR CHARACTERIZATION ; MOLECULES ; MONOCLONAL-ANTIBODY ; MR-165000 DESMOGLEIN ; NON-EPIDERMAL DESMOSOMES ; PLAQUE PROTEIN ; SUBDURAL SPACE ; TISSUE ; TUMORS
    Abstract: Intercellular junctions morphologically identical to epithelial desmosomes are known structures in meningiomas and arachnoidal tissue. Desmoplakin as one of the desmosomal plaque components has proven to be a reliable marker for diagnosis of meningeal tumors. Here we demonstrate by immunofluorescence microscopy, immunoblot and reverse transcription-PCR reactions that cells of arachnoidal tissue, of diverse meningioma subtypes and of a meningioma-derived cell line contain the full complement of the typical desmosomal proteins desmoplakin (DP), plakophilin 2 (PP2), desmocollin 2 (Dsc2) and desmoglein 2 (Dsg2). Consequently, all these molecules are suitable for diagnostic applications of meningioma tumors. In addition to these constitutive desmosomal components, representative for single-layered (simple) epithelia, the dural border cells of the arachnoid and about 60% of the meningiomas tested were positive for desmocollin 3 (Dsc3), a protein in epithelia taken as an indicator for differentiation
    Type of Publication: Journal article published
    PubMed ID: 12845453
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CELL ; Germany ; CLASSIFICATION ; DENSITY ; FOLLOW-UP ; SYSTEM ; COHORT ; HISTORY ; NEW-YORK ; DISTINCT ; PATIENT ; VARIANTS ; hippocampus ; NO ; PATTERNS ; AGE ; REGION ; pathology ; TYPE-2 ; INJURY ; LOBE EPILEPSY ; PATTERN ; VARIANT ; AUTOPSY ; SEIZURES ; neurogenesis ; USA ; LOSSES ; correlation ; epilepsy ; GRADING SYSTEM ; PREDICTOR ; SPECIMENS ; AMYGDALOHIPPOCAMPECTOMY ; CORTICAL DYSPLASIA ; DUAL PATHOLOGY ; FIBER SYNAPTIC REORGANIZATION ; HIPPOCAMPAL NEURON LOSS ; PROLONGED FEBRILE CONVULSIONS
    Abstract: We propose a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE). One hundred and seventy-eight surgically resected specimens were microscopically examined with respect to neuronal cell loss in hippocampal subfields CA1-CA4 and dentate gyrus. Five distinct patterns were recognized within a consecutive cohort of anatomically well-preserved surgical specimens. The first group comprised hippocampi with neuronal cell densities not significantly different from age matched autopsy controls [no mesial temporal sclerosis (no MTS); n = 34, 19%]. A classical pattern with severe cell loss in CA1 and moderate neuronal loss in all other subfields excluding CA2 was observed in 33 cases (19%), whereas the vast majority of cases showed extensive neuronal cell loss in all hippocampal subfields (n = 94, 53%). Due to considerable similarities of neuronal cell loss patterns and clinical histories, we designated these two groups as MTS type 1a and 1b, respectively. We further distinguished two atypical variants characterized either by severe neuronal loss restricted to sector CA1 (MTS type 2; n = 10, 6%) or to the hilar region (MTS type 3, n = 7, 4%). Correlation with clinical data pointed to an early age of initial precipitating injury (IPI 〈 3 years) as important predictor of hippocampal pathology, i.e. MTS type 1a and 1b. In MTS type 2, IPIs were documented at a later age (mean 6 years), whereas in MTS type 3 and normal appearing hippocampus (no MTS) the first event appeared beyond the age of 13 and 16 years, respectively. In addition, postsurgical outcome was significantly worse in atypical MTS, especially MTS type 3 with only 28% of patients having seizure relief after 1-year follow-up period, compared to successful seizure control in MTS types 1a and 1b (72 and 73%). Our classification system appears suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies
    Type of Publication: Journal article published
    PubMed ID: 17221203
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: brain ; EXPRESSION ; tumor ; CELL ; Germany ; NEW-YORK ; SITE ; GENE ; meningioma ; TUMORS ; primary ; ACID ; ADENOMAS ; PROGRESSION ; MUTATION ; REGION ; MUTATIONS ; EXCHANGE ; EGF RECEPTOR ; pathology ; mutagenesis ; SUBSETS ; GLIOMAS ; P53 MUTATIONS ; MULTIFORME ; ADULT ; BRAIN-TUMORS ; DEHYDROGENASE ; GLIOMA ; GRADE ; astrocytoma ; medulloblastoma ; PRIMITIVE NEUROECTODERMAL TUMORS ; brain tumors ; analysis ; oligodendroglioma ; USA ; GENOMIC REGION ; GLIOBLASTOMA ; pediatric ; adenoma ; SECONDARY GLIOBLASTOMAS ; PITUITARY-ADENOMAS ; DIFFUSE ASTROCYTOMAS ; GIANT-CELL GLIOBLASTOMAS ; high frequency ; IDH1 ; MOLECULAR-GENETIC-ANALYSIS ; NADP(+)-DEPENDENT ISOCITRATE DEHYDROGENASE ; PILOCYTIC ASTROCYTOMAS ; POSITION
    Abstract: A recent study reported on mutations in the active site of the isocitrate dehydrogenase (IDH1) gene in 12% of glioblastomas. All mutations detected resulted in an amino acid exchange in position 132. We analyzed the genomic region spanning wild type R132 of IDH1 by direct sequencing in 685 brain tumors including 41 pilocytic astrocytomas, 12 subependymal giant cell astrocytomas, 7 pleomorphic xanthoastrocytomas, 93 diffuse astrocytomas, 120 adult glioblastomas, 14 pediatric glioblastomas, 105 oligodendrogliomas, 83 oligoastrocytomas, 31 ependymomas, 58 medulloblastomas, 9 supratentorial primitive neuroectodermal tumors, 17 schwannomas, 72 meningiomas and 23 pituitary adenomas. A total of 221 somatic IDH1 mutations were detected and the highest frequencies occurred in diffuse astrocytomas (68%), oligodendrogliomas (69%), oligoastrocytomas (78%) and secondary glioblastomas (88%). Primary glioblastomas and other entities were characterized by a low frequency or absence of mutations in amino acid position 132 of IDH1. The very high frequency of IDH1 mutations in WHO grade II astrocytic and oligodendroglial gliomas suggests a role in early tumor development
    Type of Publication: Journal article published
    PubMed ID: 18985363
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: AGENT, APOPTOSIS, APOPTOSIS-INDUCING LIGAND, CANCER, CASPASE-8, CD133, CELL, CELLS, C-FLIP, COMBINAT
    Abstract: Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising cancer drug. However, many tumours are resistant to TRAIL-based therapies. Glioma cells with stem cell features (SCG), such as CD133 expression and neurosphere formation, have been recently identified to be more resistant to cytotoxic drugs than glioma cells lacking stem-cell-like features (NSCGs). Here we report that SCGs are completely resistant to 100-2,000 ng/ml TRAIL, whereas NSCGs revealed a moderate sensitivity to TRAIL. We found that SCGs exhibited only low levels of caspase-8 mRNA and protein, known to be indispensable for TRAIL-induced apoptosis. In addition, we detected hypermethylation of CASP8 promoter in SCGs, whereas NSCGs exhibited a non-methylated CASP8 promoter. Reexpression of caspase-8 by 5-Aza-2'-deoxycytidine was not sufficient to restore TRAIL sensitivity in SCGs cells, suggesting that additional factors cause TRAIL resistance in SCGs. Our data suggest that therapy with TRAIL, either as monotherapy or in combination with demethylating agents, is not effective in treating glioblastoma because SCGs are not targeted by such treatment
    Type of Publication: Journal article published
    PubMed ID: 19214542
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: brain ; tumor ; Germany ; neoplasms ; TOOL ; HYBRIDIZATION ; DIFFERENTIATION ; TUMORS ; MARKER ; BIOLOGY ; IN-SITU ; AMPLIFICATION ; AGE ; ABERRATIONS ; FISH ; CENTRAL-NERVOUS-SYSTEM ; pathology ; CHILDREN ; BEHAVIOR ; CHROMOSOMES ; FEATURES ; brain tumor ; BRAIN-TUMORS ; PRIMITIVE NEUROECTODERMAL TUMORS ; LOCUS ; diagnostic marker ; ABUNDANT NEUROPIL ; TRUE ROSETTES ; 19q13 ; Embryonal brain tumor ; Ependymoblastoma ; ETANTR ; Molecular diagnosis ; WHO classification of CNS tumors
    Abstract: Ependymoblastoma (EBL) and embryonal tumor with abundant neuropil and true rosettes (ETANTR) are very aggressive embryonal neoplasms characterized by the presence of ependymoblastic multilayered rosettes typically occurring in children below 6 years of age. It has not been established whether these two tumors really comprise distinct entities. Earlier, using array-CGH, we identified a unique focal amplification at 19q13.42 in a case of ETANTR. In the present study, we investigated this locus by fluorescence in situ hybridization in 41 tumors, which had morphologically been diagnosed as EBL or ETANTR. Strikingly, FISH analysis revealed 19q13.42 amplifications in 37/40 samples (93%). Among tumors harboring the amplification, 19 samples were identified as ETANTR and 18 as EBL. The three remaining tumors showed a polysomy of chromosome 19. Analysis of recurrent/metastatic tumors (n = 7) showed that the proportion of nuclei carrying the amplification was increased (up to 80-100% of nuclei) in comparison to the corresponding primary tumors. In conclusion, we have identified a hallmark cytogenetic aberration occurring in virtually all embryonal brain tumors with ependymoblastic rosettes suggesting that ETANTR and EBL comprise a single biological entity. FISH analysis of the 19q13.42 locus is a very promising diagnostic tool to identify a subset of primitive neuroectodermal tumors with distinct morphology, biology, and clinical behavior
    Type of Publication: Journal article published
    PubMed ID: 20407781
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: brain ; tumor ; Germany ; CLASSIFICATION ; TUMORS ; SEQUENCE ; TYPE-1 ; immunohistochemistry ; MUTATION ; MUTATIONS ; pathology ; BEHAVIOR ; FEATURES ; brain tumor ; BRAIN-TUMORS ; GLIOMA ; SUBTYPES ; OLIGODENDROGLIAL TUMORS ; GLIOBLASTOMA ; GLIOMATOSIS CEREBRI ; TP53 MUTATIONS ; GENETIC ABERRATIONS ; IDH1 ; CODON 132 MUTATION ; GLIOBLASTOMAS ; Type ; IDH1 mutation ; Diffuse infiltrative glioma ; Primary gliomatosis cerebri type 1 ; Primary gliomatosis cerebri type 2 ; Secondary gliomatosis cerebri
    Abstract: The current WHO classification of brain tumors defines gliomatosis cerebri (GC) as an extensively infiltrating astrocytic glioma involving at least three cerebral lobes. The relation of GC to diffuse astrocytomas and glioblastoma is uncertain. Due to malignant biological behavior, GC is allotted to WHO grade III. Recent reports showed IDH1 mutations in astrocytic and oligodendroglial tumors WHO grades II and III and in secondary glioblastomas with a frequency of up to 90%, whereas IDH1 mutations occurred in only 5% of primary glioblastomas. Here, we examined the frequency of IDH1 mutations in 35 GC samples by direct sequencing, derived cleaved amplified polymorphic sequence analysis and immunohistochemistry. We identified IDH1 mutations in 10/24 (42%) cases, which also included a solid tumor portion (type 2 GC), but not in 11 "classical" cases without solid tumor mass (type 1 GC). TP53 mutations were revealed in two type 2 GC, but not in any type 1 GC, while combined chromosomal losses of 1p and 19q were not found at all. Our data suggest that GC consists of two histological/molecular subtypes, type 1 being clearly distinct from diffuse astrocytoma, and type 2 sharing features with diffuse astrocytoma
    Type of Publication: Journal article published
    PubMed ID: 20514489
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Abstract: WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm. For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III. Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas. We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network. Patients with anaplastic astrocytomas carried IDH1 mutations in 60%, and patients with glioblastomas in 7.2%. IDH1 was the most prominent single prognostic factor (RR 2.7; 95% CI 1.6-4.5) followed by age, diagnosis and MGMT. The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p 〈 0.0001). In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system. Our data indicate that much of the prognostic significance of patient age is due to the predominant occurrence of IDH1 mutations in younger patients. Immunohistochemistry using a mutation-specific antibody recognizing the R132H mutation yielded similar results. We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.
    Type of Publication: Journal article published
    PubMed ID: 21088844
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: PATHWAY ; ACTIVATION ; MUTATIONS ; BRAF ; IDH1 ; Diffuse astrocytoma ; IDH2 ; Pilocytic astrocytoma
    Abstract: Separation of pilocytic astrocytoma from diffuse astrocytomas frequently poses problems mostly related to small sample size. Precise classification and grading are essential due to different therapeutic strategies prompted by diagnoses of pilocytic astrocytoma WHO grade I, diffuse astrocytomas WHO grade II or anaplastic astrocytoma WHO grade III. Recently, genomic aberrations with a high specificity for distinct glioma entities have been described. Pilocytic astrocytomas carry a duplication at chromosome band 7q34 containing a BRAF-KIAA1549 gene fusion in the majority of cases. IDH1 mutations are observed very frequently in adult astrocytomas and IDH2 mutations have been reported in some astrocytomas. We examined a series of 120 astrocytomas including 70 pilocytic astrocytomas WHO grade I and 50 diffuse astrocytomas WHO grade II for both, BRAF-KIAA1549 fusion with a newly developed FISH assay and mutations in IDH1 and IDH2 by direct sequencing. Pilocytic astrocytomas contained the BRAF fusion in 49 cases (70%) but neither IDH1 nor IDH2 mutations. Astrocytomas WHO grade II exhibited IDH1 mutations in 38 cases (76%) but neither IDH2 mutations nor BRAF fusions. Thus, combined molecular analysis of BRAF and IDH1 is a sensitive and highly specific approach to separate pilocytic astrocytoma from diffuse astrocytoma.
    Type of Publication: Journal article published
    PubMed ID: 19543740
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: Medulloblastomas comprise the most frequent malignant brain tumor in childhood and one of the biggest challenges in pediatric oncology. The current concept suggests that these tumors may undergo stepwise progression as it has been shown for other brain tumors. However, conclusive evidence of molecular progression over time has not been demonstrated yet for medulloblastoma. In the present study, 28 pairs of medulloblastoma at primary diagnosis and at the time of recurrence, either occurring as local tumor regrowth or tumor dissemination, were histopathologically and molecularly analyzed. Cytogenetic analysis included interphase fluorescence in situ hybridization for five genomic loci (MYC, MYCN, 17p, 17q, 6q) that have previously been identified as prognostic markers in primary tumors. Of 16 tumors showing early recurrence (〈4 years after first diagnosis), only one showed increased histological anaplasia in the secondary lesion (6%), and two acquired genomic lesions indicative for a more malignant phenotype (13%). In contrast to this, of 12 tumors with a time to recurrence of 4 years or more, nine tumors (75%) showed a more malignant phenotype either reflected by increased anaplasia alone or by both increased anaplasia and acquirement of genomic aberrations known to be associated with inferior patient outcome. These results suggest that early recurrence in medulloblastoma mainly occurs in tumors with a highly malignant genotype and phenotype per se, whereas late recurrence is often dependent on tumor evolution toward a more malignant biology. Therefore, biopsy of recurrent tumors should be performed to assess the biologic properties of the relapsed tumor, especially when targeted therapy approaches are considered.
    Type of Publication: Journal article published
    PubMed ID: 18704466
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...