Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: brain ; CELLS ; EXPRESSION ; Germany ; GENE ; GENES ; GENOME ; PROTEIN ; PROTEINS ; transcription ; TISSUE ; MECHANISM ; mechanisms ; PROMOTER ; NUMBER ; DATABASE ; LOCALIZATION ; B-CELLS ; INVOLVEMENT ; TESTIS ; representational difference analysis ; RE ; VARIANT ; genomics ; regulation ; TRANSLATION ; GENE-REGULATION ; gene regulation ; NUCLEAR-PORE COMPLEX ; OVERLAPPING READING FRAMES ; SIGNAL PEPTIDES
    Abstract: Background: Given the complexity of higher organisms, the number of genes encoded by their genomes is surprisingly small. Tissue specific regulation of expression and splicing are major factors enhancing the number of the encoded products. Commonly these mechanisms are intragenic and affect only one gene. Results: Here we provide evidence that the IL4I1 gene is specifically transcribed from the apparent promoter of the upstream NUP62 gene, and that the first two exons of NUP62 are also contained in the novel IL4I1_2 variant. While expression of IL4I1 driven from its previously described promoter is found mostly in B cells, the expression driven by the NUP62 promoter is restricted to cells in testis (Sertoli cells) and in the brain (e.g., Purkinje cells). Since NUP62 is itself ubiquitously expressed, the IL4I1_2 variant likely derives from cell type specific alternative pre-mRNA processing. Conclusion: Comparative genomics suggest that the promoter upstream of the NUP62 gene originally belonged to the IL4I1 gene and was later acquired by NUP62 via insertion of a retroposon. Since both genes are apparently essential, the promoter had to serve two genes afterwards. Expression of the IL4I1 gene from the "NUP62" promoter and the tissue specific involvement of the pre-mRNA processing machinery to regulate expression of two unrelated proteins indicate a novel mechanism of gene regulation
    Type of Publication: Journal article published
    PubMed ID: 16029492
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: CELLS ; PROTEIN ; lamin ; ARCHITECTURE ; NUCLEAR
    Abstract: Intermediate filaments include the nuclear lamins, which are universal in metazoans, and the cytoplasmic intermediate filaments, which are much more varied and form cell type-specific networks in animal cells. Until now, it has been thought that insects harbor lamins only. This view is fundamentally challenged by the discovery, reported in BMC Biology, of an intermediate filament-like cytoplasmic protein, isomin, in the hexapod Isotomurus maculatus. Here we briefly review the history of research on intermediate filaments, and discuss the implications of this latest finding in the context of what is known of their structure and functions
    Type of Publication: Journal article published
    PubMed ID: 21356127
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: CANCER CELLS ; Germany ; INHIBITION ; DISEASE ; ACTIVATED PROTEIN-KINASE ; MATURATION ; STRESS ; FUSION ; ISOLATED RAT HEPATOCYTES ; mTOR ; 3-METHYLADENINE ; MONITOR AUTOPHAGY
    Abstract: Background: Autophagy mediates lysosomal degradation of cytosolic components. Recent work has associated autophagic dysfunction with pathologies, including cancer and cardiovascular disease. To date, the identification of clinically-applicable drugs that modulate autophagy has been hampered by the lack of standardized assays capable of precisely reporting autophagic activity. Results: We developed and implemented a high-content, flow-cytometry-based screening approach for rapid, precise, and quantitative measurements of pharmaceutical control over autophagy. Our assay allowed for time-resolved individual measurements of autolysosome formation and degradation, and endolysosomal activities under both basal and activated autophagy conditions. As proof of concept, we analyzed conventional autophagy regulators, including cardioprotective compounds aminoimidazole carboxamide ribonucleotide (AICAR), rapamycin, and resveratrol, and revealed striking conditional dependencies of rapamycin and autophagy inhibitor 3 methyladenine (3-MA). To identify novel autophagy modulators with translational potential, we screened the Prestwick Chemical Library of 1,120 US Food and Drug Administration (FDA)-approved compounds for impact on autolysosome formation. In all, 38 compounds were identified as potential activators, and 36 as potential inhibitors of autophagy. Notably, amongst the autophagy enhancers were cardiac glycosides, from which we selected digoxin, strophanthidin, and digoxigenin for validation by standard biochemical and imaging techniques. We report the induction of autophagic flux by these cardiac glycosides, and the concentrations allowing for specific enhancement of autophagic activities without impact on endolysosomal activities. Conclusions: Our systematic analysis of autophagic and endolysosomal activities outperformed conventional autophagy assays and highlights the complexity of drug influence on autophagy. We demonstrate conditional dependencies of established regulators. Moreover, we identified new autophagy regulators and characterized cardiac glycosides as novel potent inducers of autophagic flux
    Type of Publication: Journal article published
    PubMed ID: 21635740
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: EXPRESSION ; PATHWAY ; RECOGNITION ; Drosophila ; CYSTEINE-RICH DOMAIN ; secretion ; Lrp6 ; WINGLESS ; PROTEIN SECONDARY STRUCTURE ; BIPHASIC MODULATOR
    Abstract: BACKGROUND: Wnt proteins are a family of secreted signaling molecules that regulate key developmental processes in metazoans. The molecular basis of Wnt binding to Frizzled and LRP5/6 co-receptors has long been unknown due to the lack of structural data on Wnt ligands. Only recently, the crystal structure of the Wnt8-Frizzled8-cysteine-rich-domain (CRD) complex was solved, but the significance of interaction sites that influence Wnt signaling has not been assessed. RESULTS: Here, we present an extensive structure-function analysis of mouse Wnt3a in vitro and in vivo. We provide evidence for the essential role of serine 209, glycine 210 (site 1) and tryptophan 333 (site 2) in Fz binding. Importantly, we discovered that valine 337 in the site 2 binding loop is critical for signaling without contributing to binding. Mutations in the presumptive second CRD binding site (site 3) partly abolished Wnt binding. Intriguingly, most site 3 mutations increased Wnt signaling, probably by inhibiting Wnt-CRD oligomerization. In accordance, increasing amounts of soluble Frizzled8-CRD protein modulated Wnt3a signaling in a biphasic manner. CONCLUSIONS: We propose a concentration-dependent switch in Wnt-CRD complex formation from an inactive aggregation state to an activated high mobility state as a possible modulatory mechanism in Wnt signaling gradients.
    Type of Publication: Journal article published
    PubMed ID: 24885675
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: BACKGROUND: A tight regulation of the Wnt-signaling network, activated by 19 Wnt molecules and numerous receptors and co-receptors, is required for the establishment of a complex organism. Different branches of this Wnt-signaling network, including the canonical Wnt/beta-catenin and the non-canonical Wnt/PCP, Wnt/Ror2 and Wnt/Ca(2+) pathways, are assigned to distinct developmental processes and are triggered by certain ligand/receptor complexes. The Wnt-signaling molecules are closely related and it is still on debate whether the information for activating a specific branch is encoded by specific sequence motifs within a particular Wnt protein. The model organism Xenopus offers tools to distinguish between Wnt-signaling molecules activating distinct branches of the network. RESULTS: We created chimeric Wnt8a/Wnt11 molecules and could demonstrate that the C-terminal part (containing the BS2) of Wnt8a is responsible for secondary axis formation. Chimeric Wnt11/Wnt5a molecules revealed that the N-terminus with the elements PS3-1 and PS3-2 defines Wnt11 specificity, while elements PS3-1, PS3-2 and PS3-3 are required for Wnt5a specificity. Furthermore, we used Xenopus dorsal marginal zone explants to identify non-canonical Wnt target genes regulated by the Wnt5a branch and the Wnt11 branch. We found that pbk was specifically regulated by Wnt5a and rab11fip5 by Wnt11. Overexpression of these target genes phenocopied the overexpression of their regulators, confirming the distinct roles of Wnt11 and Wnt5a triggered signaling pathways. Furthermore, knock-down of pbk was able to restore convergent extension movements in Wnt5a morphants. CONCLUSIONS: The N-terminal part of non-canonical Wnt proteins decides whether the Wnt5a or the Wnt11 branch of the Wnt-signaling network gets activated. The different non-canonical Wnt branches not only regulate cellular behavior, but, surprisingly, also regulate the expression of different target genes. One of these target genes, pbk, seems to be the relevant target gene executing Wnt5a-mediated regulation of convergent extension movements.
    Type of Publication: Journal article published
    PubMed ID: 27380628
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Keywords: CANCER ; CELLS ; proliferation ; SURVIVAL ; tumor ; CELL ; CELL-PROLIFERATION ; MICROSCOPY ; MODEL ; MODELS ; GENERATION ; GENE-EXPRESSION ; PROTEIN ; PROTEINS ; RNA ; DIFFERENTIATION ; MICE ; TRANSPLANTATION ; animals ; BIOLOGY ; BREAST ; breast cancer ; BREAST-CANCER ; MOUSE ; TRANSGENIC MICE ; PHENOTYPES ; EPITHELIAL-CELLS ; PHENOTYPE ; PROGENITOR CELLS ; C-MYC ; RIBOSOMAL-RNA ; electron microscopy ; PRODUCTS ; MAMMARY-GLAND ; RECIPIENTS ; PROTEIN-SYNTHESIS ; TRANSLATION ; mRNA ; cell proliferation ; development ; LEVEL ; RNAS ; PREGNANCY ; EPITHELIUM ; FRACTIONATION ; CONDITIONAL DELETION ; INTESTINAL CRYPTS ; WEIGHT-GAIN ; CASEIN SYNTHESIS ; GENOMIC TARGETS ; POLYMERASE-III TRANSCRIPTION ; PRIMARY BREAST CARCINOMAS
    Abstract: Background: The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results: Generation of c-myc(fl/fl) mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion: We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role for c-Myc in progenitor cell proliferation and/or survival
    Type of Publication: Journal article published
    PubMed ID: 19785743
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: EXPRESSION ; MELANOGASTER ; LIGANDS ; physiology ; SIZE ; WING DEVELOPMENT ; PATTERN Reprint Address: Teleman, AA (reprint author)
    Abstract: BACKGROUND: Wnt6 is an evolutionarily ancient member of the Wnt family. In Drosophila, Wnt6 loss-of-function animals have not yet been reported, hence information about fly Wnt6 function is lacking. In wing discs, Wnt6 is expressed at the dorsal/ventral boundary in a pattern similar to that of wingless, an important regulator of wing size. To test whether Wnt6 also contributes towards wing size regulation, we generated Wnt6 knockout flies. RESULTS: Wnt6 knockout flies are viable and have no obvious defect in wing size or planar cell polarity. Surprisingly, Wnt6 knockouts lack maxillary palps. Interestingly, Wnt6 is absent from the genome of hemipterans, correlating with the absence of maxillary palps in these insects. CONCLUSIONS: Wnt6 is important for maxillary palp development in Drosophila, and phylogenetic analysis indicates that loss of Wnt6 may also have led to loss of maxillary palps on an evolutionary time scale.
    Type of Publication: Journal article published
    PubMed ID: 24090348
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: EXPRESSION ; GENOME ; DYNAMICS ; DNA-BINDING ; TRANSCRIPTIONAL REGULATION ; DROSOPHILA EMBRYO ; SINGLE MOLECULES ; QUANTITATIVE MODEL ; NUMBERS ; FREE-ENERGY DIFFERENCES
    Abstract: BackgroundGene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, inverted question markepigenetic inverted question mark mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes.ResultsHere, we introduce a graph-based framework which can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently-bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become history-dependent and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently.ConclusionAs epigenomic data becomes increasingly available, we anticipate that gene function will come to be represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here will provide a broader foundation for understanding how genes work.
    Type of Publication: Journal article published
    PubMed ID: 25475875
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Abstract: BACKGROUND: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. RESULTS: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. CONCLUSIONS: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function.
    Type of Publication: Journal article published
    PubMed ID: 27048449
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...