Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: APOPTOSIS ; signaling ; INTERFERENCE
    Type of Publication: Journal article published
    PubMed ID: 15197349
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; EXPOSURE ; PROTEIN ; DRUG ; cell line ; LINES ; MECHANISM ; SUFFICIENT ; MR ; CELL-LINES ; treatment ; NO ; ASSAY ; EFFICACY ; ALKYLPHOSPHOCHOLINES ; ANTILEUKEMIC EFFICACY ; CELL-LINE ; chemotherapy ; LINE ; MODULATION ; p53 ; BETA ; Jun ; sensitivity ; cell lines ; ONCOLOGY ; RE ; TUMOR-SUPPRESSOR ; LEVEL ; ASSAYS ; SUPPRESSOR ; technique ; USA ; UNIT ; mechanism of action ; Rb ; antisense ; ANTINEOPLASTIC ACTIVITY ; chronic myeloid leukemia (CML) ; cytotoxic efficacy ; erucylphospho-N,N,N-trimethylpropylammonium (erufosine)
    Abstract: The alkylphosphocholine erucylphospho-N,N,N-trimethylpropylammonium (ErPC3) is a promising new drug for treating various types of cancer. Its mechanism of action is no yet fully understood but is related to the Rb tumor suppressor protein. In the present study. we investigated the role of decreased Rb expression levels for the antileukemic efficacy of ErPC3 in BV-173 and K-562 CML-derived cell lines. We used antisense technique to knock down Rb levels in the two cell lines in addition to ErPC3 treatment. Cells with reduced Rb expression showed a diminished sensitivity to ErPC3 exposure, as determinec by MTT (BV 173 and K-562) and clonogenicity assays (K-562 only), if concentration. below the IC50 were used. The feasibility of Rb knockdown varied between BV-173 and K-562 cells, with the former being distinctly more sensitive than the latter. We conclude that sufficient Rb levels are important for the cytotoxic and anticlonogenic effects of ErPC; at levels below the IC50, but that higher concentrations of ErPC3 are less dependent or Rb status
    Type of Publication: Journal article published
    PubMed ID: 17495525
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: RECEPTOR ; APOPTOSIS ; CANCER ; CELLS ; IN-VITRO ; tumor ; AGENTS ; carcinoma ; CELL ; Germany ; IN-VIVO ; INHIBITION ; THERAPY ; VITRO ; VIVO ; SAMPLES ; TUMORS ; TIME ; PATIENT ; INDUCTION ; cell cycle ; CELL-CYCLE ; CYCLE ; treatment ; PROGRESSION ; resistance ; INDUCED APOPTOSIS ; PLASMA ; prostate cancer ; PROSTATE-CANCER ; chemotherapy ; ACUTE LYMPHOBLASTIC-LEUKEMIA ; DERIVATIVES ; HEPATOMA-CELLS ; EPITHELIAL-CELLS ; CARCINOMAS ; PHARMACOKINETICS ; AGENT ; SINGLE ; ONCOLOGY ; RE ; EX-VIVO ; SOLID TUMORS ; MEDIATED APOPTOSIS ; MOLECULAR-MECHANISMS ; LEVEL ; analysis ; methods ; PLASMA-LEVELS ; dexamethasone ; PROMOTION ; USA ; GLUCOCORTICOIDS ; prospective ; in vivo ; clinical study
    Abstract: Background: Glucocorticoids have been used widely in conjunction with cancer therapy due to their ability to induce apoptosis in hematological cells and to prevent nausea and emesis. However, recent data including ours, suggest induction of therapy resistance by glucocorticoids in solid tumors, although it is unclear whether this happens only in few carcinomas or is a more common cell type specific phenomenon. Material and Methods: We performed an overall statistical analysis of our new and recent data obtained with 157 tumor probes evaluated in vitro, ex vivo and in vivo. The effect of glucocorticoids on apoptosis, viability and cell cycle progression under diverse clinically important questions was examined. Results: New in vivo results demonstrate glucocorticoid - induced chemotherapy resistance in xenografted prostate cancer. In an overall statistical analysis we found glucocorticoid - induced resistance in 89% of 157 analysed tumor samples. Resistance is common for several cytotoxic treatments and for several glucocorticoid - derivatives and due to an inhibition of apoptosis, promotion of viability and cell cycle progression. Resistance occurred at clinically achievable peak plasma levels of patients under anti - emetic glucocorticoid therapy and below, lasted for a long time, after one single dose, but was reversible upon removal of glucocorticoids. Two nonsteroidal alternative anti - emetic agents did not counteract anticancer treatment and may be sufficient to replace gluco corticoids in cotreatment of carcinoma patients. Conclusion: These data demonstrate the need for prospective clinical studies as well as for detailed mechanistic studies of GC - induced cell - type specific pro - and anti - apoptotic signalling
    Type of Publication: Journal article published
    PubMed ID: 17224649
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: APOPTOSIS ; CANCER ; THERAPY ; BIOLOGY ; PHOSPHORYLATION ; DEGRADATION ; sensitization ; THERAPIES
    Abstract: Resistance to apoptosis is one reason for the poor response of malignant brain tumors to therapy. The PPARgamma-modulating drug Troglitazone downregulates the anti-apoptotic FLIP protein and sensitizes glioblastoma cells to apoptosis induced by the death ligand TRAIL. To investigate the molecular basis of an experimental combination therapy for malignant gliomas with TRAIL and Troglitazone, we investigated the Troglitazone-induced signaling cascades and the expression of TRAIL receptors and FLIP in malignant gliomas. Troglitazone downregulated the FLIP protein through accelerated ubiquitin/proteasome-dependent degradation, which might be mediated by a Troglitazone-induced increase in reactive oxygen species. Moreover, Troglitazone induced the phosphorylation of the MAP kinase ERK1/2 as well as of the BAD protein. Inhibition of either PPARgamma or MEK1/2 blocked the Troglitazone-mediated phosphorylation of BAD and further increased the synergistic induction of glioma cell death by TRAIL and Troglitazone. Immunohistochemical analysis demonstrated that FLIP and TRAIL-R2 were significantly higher expressed in anaplastic (WHO grade III) than in diffuse (WHO grade II) gliomas. High FLIP and low TRAIL-R2 expression levels were associated with a poor prognosis of patients. Our findings warrant a further pre-clinical evaluation of an experimental anti-glioma therapy with TRAIL and Troglitazone, potentially in conjunction with a MAP kinase inhibitor.
    Type of Publication: Journal article published
    PubMed ID: 19158480
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: EXPRESSION ; THERAPY ; MICE ; DENDRITIC CELLS ; T-CELLS ; MINUTE VIRUS ; vaccination ; autonomous parvovirus ; PANCREATIC-CANCER ; VIRUS-INFECTION
    Abstract: Treatment of cancers by means of viruses, that specifically replicate in (oncotropism) and kill ( oncolysis) neoplastic cells, is increasingly gaining acceptance in the clinic. Among these agents, parvoviruses have been shown to possess not only direct oncolytic but also immunomodulating properties, serving as an adjuvant to prime the immune system to react against infected tumors. Here, we aimed to establish whether immunomodulating mechanisms participate in the recently reported therapeutic potential of parvoviruses against pancreatic carcinoma. Using adoptive transfer experiments we discovered that the transfer of splenocytes of donor rats harboring H-1PV-treated orthotopic PDAC tumors could significantly prolong the survival of naive tumor-bearing recipients, compared to those receiving cells from mock-treated donors. Closer investigation of immunological parameters in infected donor rats revealed that virus-induced interferon gamma production and cellular immune response played an important role in this effect. These data have also preclinical relevance since abortive H-1PV infection of human peripheral blood mononuclear cells or cocultivation of these cells with H-1PV-preinfected pancreatic cancer cells, resulted in enhancement of innate and adaptive immune reactivity. Taken together our data reveal that oncolytic H-1PV modulates the immune system into an anticancer state, and further support the concept of using parvoviruses in the fight against pancreatic cancer.
    Type of Publication: Journal article published
    PubMed ID: 21124075
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: APOPTOSIS ; THERAPY ; resistance ; GEMCITABINE ; CANCER PROGRESSION ; liver metastasis ; RIBOSOME-INACTIVATING PROTEINS ; pancreatic ductal adenocarcinoma ; XIMENIA-AMERICANA
    Abstract: Riproximin (Rpx) is a type II ribosome inactivating protein, which was investigated for its activity in pancreatic ductal adenocarcinoma (PDAC) in a panel of 17 human and rat PDAC cell lines and in rat pancreatic cancer liver metastasis. Cytotoxicity in response to Rpx was determined by MTT assay, apoptosis by flow cytometry and qRT-PCR for apoptosis related genes, and the modulation of the transcriptome was monitored by micro array analysis. The combination effect of Rpx and TRAIL was assessed by MTT assay. Rpx showed high but varying cytotoxicity in PDAC cells. Based on overall gene expression, the sensitivity of these cells was linked to genes involved in apoptosis. Furthermore, based on the affinity of Rpx for CEA, the expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) genes was significantly related to Rpx's cytotoxicity in cells with CEACAM gene expression.
    Type of Publication: Journal article published
    PubMed ID: 24918923
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: METABOLISM ; RELEASE ; RECEPTORS ; CNS ; BRAIN-TUMORS ; MALIGNANT GLIOMAS ; TRANSPORTERS ; CYSTINE/GLUTAMATE ANTIPORTER ; ACTIVATED MICROGLIA ; AMPA-TYPE
    Abstract: Glioblastoma cells produce and release high amounts of glutamate into the extracellular milieu and subsequently can trigger seizure in patients. Tumor-associated microglia/macrophages (TAMs), consisting of both parenchymal microglia and monocytes-derived macrophages (MDMs) recruited from the blood, are known to populate up to 1/3 of the glioblastoma tumor environment and exhibit an alternative, tumor-promoting and supporting phenotype. However, it is unknown how TAMs respond to the excess extracellular glutamate in the glioblastoma microenvironment. We investigated the expressions of genes related to glutamate transport and metabolism in human TAMs freshly isolated from glioblastoma resections. Quantitative real-time PCR analysis showed (i) significant increases in the expressions of GRIA2 (GluA2 or AMPA receptor 2), SLC1A2 (EAAT2), SLC1A3 (EAAT1), (ii) a near-significant decrease in the expression of SLC7A11 (cystine-glutamate antiporter xCT) and (iii) a remarkable increase in GLUL expression (glutamine synthetase) in these cells compared to adult primary human microglia. TAMs co-cultured with glioblastoma cells also exhibited a similar glutamatergic profile as freshly isolated TAMs except for a slight increase in SLC7A11 expression. We next analyzed these genes expressions in cultured human MDMs derived from peripheral blood monocytes for comparison. In contrast, MDMs co-cultured with glioblastoma cells compared to MDMs co-cultured with normal astrocytes exhibited decreased expressions in the tested genes except for GLUL. This is the first study to demonstrate transcriptional changes in glutamatergic signaling of TAMs in a glioblastoma microenvironment, and the findings here suggest that TAMs and MDMs might potentially elicit different cellular responses in the presence of excess extracellular glutamate.
    Type of Publication: Journal article published
    PubMed ID: 26047211
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; EXPRESSION ; tumor ; TUMOR-CELLS ; carcinoma ; CELL ; human ; TOOL ; GENE ; GENE-EXPRESSION ; GENES ; GENOME ; microarray ; DIFFERENTIATION ; TISSUE ; TRANSDUCTION ; MARKER ; TISSUES ; cell cycle ; CELL-CYCLE ; CYCLE ; signal transduction ; SIGNAL ; DISCOVERY ; gene expression ; microarrays ; SIGNAL-TRANSDUCTION ; MARKERS ; DATABASE ; HUMAN GENOME ; US ; RT-PCR ; adenocarcinoma ; ADENOCARCINOMAS ; immune response ; IMMUNE-RESPONSE ; NORMAL TISSUE ; tumor marker ; DIFFERENTIAL EXPRESSION ; HUMAN GENES ; pancreatic cancer ; inflammation ; DMBT1 ; CDNA MICROARRAY ; PROGRAM ; PANCREATIC-CANCER ; COLON CANCERS ; DUCTAL ADENOCARCINOMA ; databases ; ANNOTATION ; RESOURCE ; LIBRARIES ; CANCER STATISTICS ; EPITHELIAL NEOPLASMS ; INVARIANT CHAIN EXPRESSION ; SAGE ; STEM-CELL ANTIGEN ; TISSUE MICROARRAYS
    Abstract: Serial analysis of gene expression ( SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human genome and better biocomputational techniques have substantially improved the assignment of differentially expressed SAGE "tags" to human genes. These improvements have provided us with an opportunity to re-evaluate global gene expression in pancreatic cancer using existing SAGE libraries. SAGE libraries generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags. Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper ( http://tagmapper.ibioinformatics.org), to identify 16 additional differentially expressed genes. The differential expression of seven genes, involved in multiple cellular processes such as signal transduction (MIC-1), differentiation (DMBT1 and Neugrin), immune response (CD74), inflammation (CXCL2), cell cycle (CEB1) and enzymatic activity ( Kallikrein 6), was confirmed by either immunohistochemical labeling of tissue microarrays ( Kallikrein 6, CD74 and DMBT1) or by RT-PCR ( CEB1, Neugrin, MIC1 and CXCL2). Of note, Neugrin was one of the genes whose previously uncharacterized SAGE tag was correctly assigned using TAGmapper, validating the utility of this program. Novel differentially expressed genes in a cancer type can be identified by revisiting updated and expanded SAGE databases. TAGmapper should prove to be a powerful tool for the discovery of novel tumor markers through assignment of uncharacterized SAGE tags
    Type of Publication: Journal article published
    PubMed ID: 15477757
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; EXPRESSION ; GROWTH ; INVASION ; proliferation ; SURVIVAL ; tumor ; carcinoma ; CELL-PROLIFERATION ; Germany ; human ; FOLLOW-UP ; DISEASE ; liver ; PROTEIN ; MOLECULES ; TISSUE ; TUMORS ; TIME ; PATIENT ; MARKER ; DONOR ; prognosis ; TISSUES ; MOLECULE ; BREAST-CANCER ; GLYCOPROTEIN ; IDENTIFICATION ; MALIGNANCIES ; METASTASIS ; metastases ; PCR ; CANCER-CELLS ; ADHESION ; MIGRATION ; CANCER-PATIENTS ; adenocarcinoma ; LIVER METASTASES ; CANCER PATIENTS ; HEALTHY ; pancreatic cancer ; chronic pancreatitis ; SERUM ; ELISA ; MALIGNANCY ; RECOMBINANT ; PANCREATIC-CANCER ; TUMOR-GROWTH ; DUCTAL ADENOCARCINOMA ; INCREASE ; extracellular matrix ; REAL-TIME ; cell adhesion ; cell proliferation ; LEVEL ; OSTEOPONTIN ; SERUM-LEVELS ; downregulation ; function ; BLOCKADE ; IMMUNOHISTOCHEMICAL ANALYSIS ; INVASIVENESS ; lymph node ; LYMPH-NODE ; PLASMA OSTEOPONTIN ; restricting ; serum marker
    Abstract: Pancreatic ductal adenocarcinoma ( PDAC) is one of the most aggressive malignancies, with an overall 5-year survival rate of less than 5%. Invasive tumor growth and early metastasis are two important reasons for this dismal prognosis. Osteopontin ( OPN) is a secretory protein with a variety of functions, for example in cell adhesion and migration, inflammatory reaction and apoptosis. In this study the functional role of OPN in human pancreatic cancer and its potential use as a disease marker were analyzed. By real time quantitative PCR, there was a 2.2- fold and 1.6- fold increase of OPN mRNA in pancreatic cancers (n = 23) and chronic pancreatitis samples (n = 22), respectively, compared to normal pancreatic tissues (n = 20). Immunohistochemical analysis demonstrated OPN staining in 60% of the primary pancreatic tumors and in 72% of the lymph node and liver metastases. ELISA analysis of serum samples obtained from pancreatic cancer patients (n = 70), chronic pancreatitis patients (n = 12), and healthy donors (n = 20) showed a 1.6-fold increase in OPN serum levels in patients with tumors and a 1.9-fold increase in patients with chronic pancreatitis. Recombinant human OPN significantly increased the invasiveness of pancreatic cancer cells, without having any impact on cell proliferation. In addition, downregulation of OPN by specific siRNA molecules decreased pancreatic cancer cell invasion. In conclusion, OPN serum levels in pancreatic cancer and chronic pancreatitis patients are not significantly different, thereby restricting its role as a prognostic or follow-up marker. Our results do suggest, however, that blockade of OPN might be useful as a therapeutic approach to inhibit invasion and metastasis of pancreatic cancer cells
    Type of Publication: Journal article published
    PubMed ID: 15970685
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: APOPTOSIS ; CANCER ; CELLS ; tumor ; TUMOR-CELLS ; CELL ; Germany ; PATHWAY ; DEATH ; PROTEIN ; PROTEINS ; ACTIVATION ; INDUCTION ; NUCLEAR-LOCALIZATION ; CYTOTOXICITY ; ONCOLOGY ; USA ; oncotoxicity ; viral ; PARVOVIRUS MINUTE VIRUS ; apoptin ; viral proteins ; programmed cell death ; ADENOVIRUS E4ORF4 PROTEIN ; anti-cancer treatment ; death pathways ; tumor cell death
    Type of Publication: Journal article published
    PubMed ID: 18769128
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...