Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Abstract: The devastating diseases of human cancer are mimicked in basic and translational cancer research by a steadily increasing number of tumor models, a situation requiring a platform with standardized reports to share model data. Models in Translational Oncology (MiTO) database was developed as a unique Web platform aiming for a comprehensive overview of preclinical models covering genetically engineered organisms, models of transplantation, chemical/physical induction, or spontaneous development, reviewed here. MiTO serves data entry for metastasis profiles and interventions. Moreover, cell lines and animal lines including tool strains can be recorded. Hyperlinks for connection with other databases and file uploads as supplementary information are supported. Several communication tools are offered to facilitate exchange of information. Notably, intellectual property can be protected prior to publication by inventor-defined accessibility of any given model. Data recall is via a highly configurable keyword search. Genome editing is expected to result in changes of the spectrum of model organisms, a reason to open MiTO for species-independent data. Registered users may deposit own model fact sheets (FS). MiTO experts check them for plausibility. Independently, manually curated FS are provided to principle investigators for revision and publication. Importantly, noneditable versions of reviewed FS can be cited in peer-reviewed journals. Cancer Res; 77(10); 2557-63. (c)2017 AACR.
    Type of Publication: Journal article published
    PubMed ID: 28507049
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Aneuploidy is a hallmark of most human tumors, but the molecular physiology of aneuploid cells is not well characterized. In this study, we screened cell surface biomarkers of approximately 300 proteins by multiparameter flow cytometry using multiple aneuploid model systems such as cell lines, patient samples, and mouse models. Several new biomarkers were identified with altered expression in aneuploid cells, including overexpression of the cellular prion protein CD230/PrPC and the immunosuppressive cell surface enzyme ecto-5'-nucleotidase CD73. Functional analyses associated these alterations with increased cellular stress. An increased number of CD73+ cells was observed in confluent cultures in aneuploid cells relative to their diploid counterparts. An elevated expression in CD230/PrPC was observed in serum-deprived cells in association with increased generation of reactive oxygen species. Overall, our work identified biomarkers of aneuploid karyotypes, which suggest insights into the underlying molecular physiology of aneuploid cells. Cancer Res; 77(11); 2914-26. (c)2017 AACR.
    Type of Publication: Journal article published
    PubMed ID: 28377454
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    facet.materialart.
    Cancer Research 74 (17), 4671-4675 
    Keywords: CELLS ; carcinoma ; GENERATION ; TUMORS ; DISCOVERY ; senescence ; PANCREAS CANCER
    Abstract: The Helmholtz Alliance Preclinical Comprehensive Cancer Center (PCCC; www.helmholtz-pccc.de) hosted the "1st International Kloster Seeon Meeting on Mouse Models of Human Cancer" in the Seeon monastery (Germany) from March 8 to 11, 2014. The meeting focused on the development and application of novel mouse models in tumor research and high-throughput technologies to overcome one of the most critical bottlenecks in translational bench-to-bedside tumor biology research. Moreover, the participants discussed basic molecular mechanisms underlying tumor initiation, progression, metastasis, and therapy resistance, which are the prerequisite for the development of novel treatment strategies and clinical applications in cancer therapy. Cancer Res; 74(17); 4671-5. (c)2014 AACR.
    Type of Publication: Journal article published
    PubMed ID: 25136075
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: RECEPTOR ; ANGIOGENESIS ; APOPTOSIS ; CANCER ; CANCER CELLS ; CELLS ; ENDOTHELIAL-CELLS ; EXPRESSION ; FLK-1/KDR ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; INVASION ; IONIZING-RADIATION ; IRRADIATION ; proliferation ; PROTECTION ; radiotherapy ; SURVIVAL ; tumor ; TUMOR-CELLS
    Abstract: In recent decades, radiation research has concentrated primarily on the cancer cell compartment. Much less is known about the effect of ionizing radiation on the endothelial cell compartment and the complex interaction between tumor cells and their microenvironment. Here we report that ionizing radiation is a potent antiangiogenic agent that inhibits endothelial cell survival, proliferation, tube formation and invasion. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor were able to reduce the radiosensitivity of endothelial cells. Yet, it is also found that radiation induces angiogenic factor production by tumor cells that can be abrogated by the addition of antiangiogenic agents. Receptor tyrosine kinase inhibitors of Flk-1/KDR/VEGFR2, FGFR1 and PDGFRbeta, SU5416, and SU6668 enhanced the antiangiogenic effects of direct radiation of the endothelial cells. In a coculture system of PC3 prostate cancer cells and endothelial cells, isolated irradiation of the PC3 cells enhanced endothelial cell invasiveness through a Matrigel matrix, which was inhibited by SU5416 and SU6668. Furthermore, ionizing radiation up-regulated VEGF and basic fibroblast growth factor in PC3 cells and VEGFR2 in endothelial cells. Together these findings suggest a radiation-inducible protective role for tumor cells in the support of their associated vasculature that may be down- regulated by coadministration of angiogenesis inhibitors., These results rationalize concurrent administration of angiogenesis inhibitors and radiotherapy in cancer treatment
    Type of Publication: Journal article published
    PubMed ID: 12839971
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: RECEPTOR ; SPECTRA ; ANGIOGENESIS ; CANCER ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; proliferation ; SURVIVAL ; tumor ; ADVANCED SOLID TUMORS ; AGENTS ; ANGIOSTATIN ; BLOOD ; carcinoma ; CELL ; CELL LUNG-CANCER ; CELL-PROLIFERATION ; CLINICAL-TRIAL ; COMBINATION ; DOPPLER ; ENDOTHELIAL GROWTH-FACTOR ; evaluation ; FACTOR RECEPTOR ; Germany ; human ; IN-VIVO ; INHIBITION ; KINASE ; LUNG ; MICROSCOPY ; MICROVESSEL DENSITY ; MODEL ; MODELS ; neoplasms ; PATHWAY ; PATHWAYS ; PERFUSION ; PHASE-I ; PROSTATE ; RECOMBINANT HUMAN ENDOSTATIN ; THERAPY ; TOXICITY ; tumor growth ; TYROSINE KINASE ; VITRO ; VIVO
    Abstract: The multifaceted nature of the angiogenic process in malignant neoplasms suggests that protocols that combine antiangiogenic agents may be more effective than single-agent therapies. However it is unclear which combination of agents would be most efficacious and will have the highest degree of synergistic activity while maintaining low overall toxicity. Here we investigate the concept of combining a "direct" angiogenesis inhibitor (endostatin) with an "indirect" antiangiogenic compound [SU5416, a vascular endothelial growth factor receptor 2 (VEGFR2) receptor tyrosine kinase (RTK) inhibitor]. These angiogenic agents were more effective in combination than when used alone in vitro (endothelial cell proliferation, survival, migration/invasion, and tube formation tests) and in vivo. The combination of SU5416 and low-dose endostatin further reduced tumor growth versus monotherapy in human prostate (M), lung (A459), and glioma (U87) xenograft models, and reduced functional microvessel density, tumor microcirculation, and blood perfusion as detected by intravital microscopy and contrast-enhanced Doppler ultrasound. One plausible explanation for the efficacious combination could be that, whereas SU5416 specifically inhibits vascular endothelial growth factor signaling, low-dose endostatin is able to inhibit a broader spectrum of diverse angiogenic pathways directly in the endothelium. The direct antiangiogenic agent might be able to suppress alternative angiogenic pathways up-regulated by the tumor in response to the indirect, specific pathway inhibition. For future clinical evaluation of the concept, a variety of agents with similar mechanistic properties could be tested
    Type of Publication: Journal article published
    PubMed ID: 14695206
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: APOPTOSIS ; CANCER ; CELLS ; EXPRESSION ; tumor ; CELL ; Germany ; human ; THERAPY ; DEATH ; GENE ; GENE-EXPRESSION ; GENES ; PROTEIN ; SACCHAROMYCES-CEREVISIAE ; DRUG ; NEUROBLASTOMA-CELLS ; FAMILY ; PROTEIN FAMILY ; DOMAIN ; CONTRAST ; MEMBER ; MEMBERS ; SEQUENCE ; SIGNAL ; BREAST-CANCER ; cytokines ; ACID ; ACIDS ; PROGRESSION ; ENCODES ; YEAST ; resistance ; CELL-DEATH ; PLASMA ; MEMBRANE ; INTERFERON ; sensitization ; AMINO-ACIDS ; OVEREXPRESSION ; MYCN ; neuroblastoma ; DRUG-INDUCED APOPTOSIS ; MAPS ; DISULFIDE BOND FORMATION ; EGG-WHITE ; INDUCED CELL DEATH ; QUIESCIN Q6 ; RETINOID COMBINATION ; THIOREDOXIN REDUCTASE
    Abstract: In neuroblastoma cells, apoptotic programs can be activated by cytokines and cytostatic drugs. Apoptotic dysfunction confers resistance against therapeutic drugs and is a major complication for achieving optimal therapy response. Deregulated expression of the MYCN gene is a critical determinant in neuroblastoma progression, and one of the pleiotropic functions of the MYCN protein is cellular sensitization to cytokine-induced and drug-induced apoptosis. By using the functional approach of technical knockout (TKO), we have identified five genes that regulate sensitization for IFN-gamma-induced cell death. Most efficient among them is the newly identified SOXN (neuroblastoma-derived sulfhydryl oxidase), which comprises 12 exons and maps to 9q34.3. SOXN encodes a putative protein of 698 amino acids that contains a signal sequence, a protein-disulfide-isomerase-type thioredoxin and a yeast ERV1 domain and is highly homologous to members of the sulfhydryl oxidase/Quiescin6 family. The SOXN protein is predominantly located in the plasma and in the nuclear membrane. Antisense SOXN confers resistance to IFN-gamma-induced apoptosis. In contrast, ectopic overexpression of sense-SOXN sensitizes the cells to induced cell death. These results identify SOXN as a major player in regulating the sensitization of neuroblastoma cells for IFN-gamma-induced apoptosis
    Type of Publication: Journal article published
    PubMed ID: 14633699
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: CANCER ; human ; PROTEINS ; PATIENT ; DNA ; MECHANISM ; CONTRAST ; CYCLE ; papillomavirus ; FREQUENCY ; AGE ; MUTATION ; smoking ; COUNTRIES ; inactivation ; human papillomavirus ; TYPE-16 ; WILD-TYPE ; MUTATIONS ; HPV ; HUMAN-PAPILLOMAVIRUS ; SQUAMOUS-CELL CARCINOMA ; HEAD ; TOBACCO ; CANCER-RESEARCH ; ALCOHOL ; CONSUMPTION ; INVASIVE CERVICAL-CANCER ; NECK CANCERS ; ORAL CAVITY ; ORAL-CANCER ; DRINKING ; P53 STATUS ; SUBSET
    Abstract: TP53 mutations were analyzed in 35 human papillomavirus (HPV) type 16 DNA-positive cancers of the oral cavity and oropharynx and in 35 HPV DNA-negative cancers matched by subsite, country, sex, age, and tobacco and alcohol consumption. Wild-type TP53 was found more frequently in cancer specimens that contained HPV16 DNA than in those that did not. All 14 HPV16 DNA-positive cancers in HPV16 E6 antibody-positive patients contained wild-type TP53, compared with 50% of corresponding HPV DNA-negative cancers (matched odds ratio, infinity; 95% confidence interval, 1.4-infinity). In contrast, for HPV16 DNA-positive cancers in E6-negative patients, wild-type TP53 frequency was similar to that in corresponding HPV DNA-negative cancers (matched odds ratio, 1.0; 95% confidence interval, 0.2-5.4). TP53 inactivation is a major mechanism of HPV-related carcinogenesis in the oral cavity and oropharynx. The role of HPV in cancers also containing TP53 mutations remains to be clarified
    Type of Publication: Journal article published
    PubMed ID: 14744758
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: CANCER ; EXPRESSION ; tumor ; carcinoma ; CELL ; Germany ; incidence ; GENE ; GENES ; HYBRIDIZATION ; microarray ; cell line ; DIFFERENTIATION ; TISSUE ; LINES ; ACTIVATION ; DNA ; FAMILY ; CELL-LINES ; MEMBER ; MEMBERS ; BREAST-CANCER ; cytokines ; IDENTIFICATION ; AMPLIFICATION ; COMPARATIVE GENOMIC HYBRIDIZATION ; microarrays ; NUMBER ; CHROMOSOMAL-ABERRATIONS ; CELL-LINE ; LINE ; PCR ; REGION ; REGIONS ; adenocarcinoma ; CANCER-RESEARCH ; FREQUENT ; REVEALS ; IMBALANCES ; OVEREXPRESSION ; cell lines ; pancreatic cancer ; pancreatic carcinoma ; GENOMIC HYBRIDIZATION ; HIGH-LEVEL ; CYTOKINE ; ONCOLOGY ; SUBSET ; RE ; PANCREATIC-CANCER ; FAMILIES ; AMPLIFICATIONS ; LEADS ; CANDIDATE GENES ; REAL-TIME ; EGFR ; MALT-LYMPHOMA
    Abstract: Genomic analyses aimed at the detection of high-level DNA amplifications were performed on 13 widely used pancreatic cancer cell lines and 6 pancreatic tumor specimens. For these analyses, array-based comparative genomic hybridization (Matrix-CGH) onto dedicated microarrays was used. In comparison with chromosomal CGH (eight amplifications), a 〉3-fold number of DNA amplifications was detected (n = 29). The most frequent amplifications mapped to 7p12.3 (three pancreatic cancer cell lines and three pancreatic tumor specimens), 8q24 (four pancreatic cancer cell lines and one pancreatic tumor specimen), 11q13 (three pancreatic cancer cell lines and three pancreatic tumor specimens), and 20q13 (four pancreatic cancer cell lines and three pancreatic tumor specimens). Genes contained in the consensus regions were MYC (8q24), EGFR (7p12.3), and FGF3 (11q13). In six of seven pancreatic cancer cell lines and pancreatic tumor specimens with 20q13 amplifications, the novel candidate gene NFAT C2, which plays a role in the activation of cytokines, was amplified. Other amplifications also affected genes for which a pathogenetic role in pancreatic carcinoma has not been described, such as BCL10 and BCL6, two members of the BCL family. A subset of amplified genes was checked for overexpression by means of real-time PCR, revealing the highest expression levels for BCL6 and BCL10. Thus, Matrix-CGH allows the detection of a high number of amplifications, resulting in the identification of novel candidate genes in pancreatic cancer
    Type of Publication: Journal article published
    PubMed ID: 15231651
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: CANCER ; tumor ; carcinoma ; Germany ; DIAGNOSIS ; screening ; TOOL ; GENE ; TISSUE ; TUMORS ; PATIENT ; DNA ; MARKER ; DONOR ; SEQUENCE ; SEQUENCES ; MUTATION ; REPAIR ; colorectal cancer ; COLORECTAL-CANCER ; EFFICACY ; chemotherapy ; LINE ; MARKERS ; PCR ; REGION ; COLON-CANCER ; microsatellite instability ; MUTATIONS ; CARCINOMAS ; COLORECTAL CARCINOMAS ; CARRIERS ; INDIVIDUALS ; GERM-LINE ; pathology ; PROGNOSTIC FACTOR ; GUIDELINES ; STANDARD ; DNA-SEQUENCES ; molecular ; DEFICIENCY ; colon cancer ; COLORECTAL-CARCINOMA ; HNPCC ; PROGNOSTIC-FACTOR ; cost ; CARRIER ; multiplex ; TESTS ; ADJUVANT CHEMOTHERAPY ; BAT-26 ; MISMATCH-REPAIR ; REPLICATION ERROR PHENOTYPE
    Abstract: DNA mismatch repair deficiency is observed in about 10% to 15% of all colorectal carcinomas and in up to 90% of hereditary nonpolyposis colorectal cancer (HNPCC) patients. Tumors with mismatch repair defects acquire mutations in short repetitive DNA sequences, a phenomenon termed high-level microsatellite instability (MSI-H). The diagnosis of MSI-H in colon cancer is of increasing relevance, because MSI-H is an independent prognostic factor in colorectal cancer, seems to influence the efficacy of adjuvant chemotherapy, and is the most important molecular screening tool to identify HNPCC patients. To make MSI typing feasible for the routine pathology laboratory, highly reproducible and cost effective laboratory tests are required. Here, we describe a novel T-25 mononucleotide marker in the 3' untranslated region of the CASP2 gene (CAT25) that displayed a quasimonomorphic repeat pattern in normal tissue of 200 unrelated individuals of Caucasian origin. In addition, CAT25 was monomorphic also in all tested donors of African and Asian origin (n = 102 and n = 79, respectively) and thus differs from the most commonly used markers BAT25 and BAT26. Without the analysis of corresponding normal tissue, CAT25 correctly detected 56 of 57 colorectal cancer specimens classified as MSI-H by using the standard National Cancer Institute/International Collaborative Group-HNPCC marker panel. Combined with the standard markers BAT25 and BAT26 in a multiplex PCR, all MSI-H colorectal cancer samples were typed correctly. No false-positive results were obtained in 60 non-MSI-H control colorectal cancer specimens. These data suggest that CAT25 should be included into novel marker panels for microsatellite testing thus allowing for a significant reduction of the complexity and costs of MSI typing. Moreover, CAT25 represents a highly promising marker for early detection of colorectal cancer in HNPCC germ line mutation carriers
    Type of Publication: Journal article published
    PubMed ID: 16166278
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: RECEPTOR ; APOPTOSIS ; CANCER ; CELLS ; ENDOTHELIAL-CELLS ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; IONIZING-RADIATION ; proliferation ; radiotherapy ; SURVIVAL ; tumor ; TUMOR-CELLS ; BLOOD ; CELL-PROLIFERATION ; COMBINATION ; ENDOTHELIAL GROWTH-FACTOR ; FACTOR RECEPTOR ; Germany ; IN-VIVO ; INHIBITION ; KINASE ; THERAPY ; TOXICITY ; TYROSINE KINASE ; VITRO ; imaging ; MICE ; radiation ; PHOSPHORYLATION ; TYROSINE KINASE INHIBITOR ; MAGNETIC-RESONANCE ; MOLECULE ; magnetic resonance imaging ; CELL-SURVIVAL ; ASSAY ; COLORECTAL-CANCER ; chemotherapy ; MIGRATION ; STRATEGIES ; RANDOMIZED-TRIAL ; AKT ; REGIMENS ; signaling ; FACTOR RECEPTORS ; SINGLE ; molecular ; RE ; MULTITARGETED ANTIFOLATE ; TUMOR-GROWTH ; cancer therapy ; endothelial cells ; BLOOD-VESSELS ; normalization ; cell proliferation ; TYROSINE KINASES ; ionizing radiation ; TUMOR VASCULATURE ; ASSAYS ; KINASES ; COMBINED THERAPY ; PEMETREXED DISODIUM
    Abstract: It has been suggested that chemotherapy and radiotherapy could favorably be combined with antiangiogenesis in dual anticancer strategy combinations. Here we investigate the effects of a trimodal strategy consisting of all three therapy approaches administered concurrently. We found that in vitro and in vivo, the antiendothelial and antitumor effects of the triple therapy combination consisting of SU11657 (a multitargeted small molecule inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases), Pemetrexed (a multitargeted folate antimetabolite), and ionizing radiation were superior to all single and dual combinations. The superior effects in human umbilical vein endothelial cells and tumor cells (A431) were evident in cell proliferation, migration, tube formation, clonogenic survival, and apoptosis assays (sub-G, and caspase-3 assessment). Exploring potential effects on cell survival signaling, we found that radiation and chemotherapy induced endothelial cell Akt phosphorylation, but SU11657 could attenuate this process in vitro and in vivo in A431 human tumor xenografts growing s.c. on BALB/c nu/nu mice. Triple therapy further decreased tumor cell proliferation (Ki-67 index) and vessel count (CD31 staining), and induced greater tumor growth delay versus all other therapy regimens without increasing apparent toxicity. When testing different treatment schedules for the A431 tumor, we found that the regimen with radiotherapy (7.5 Gy single dose), given after the institution of SU11657 treatment, was more effective than radiotherapy preceding SU11657 treatment. Accordingly, we found that SU11657 markedly reduced intratumoral interstitial fluid pressure from 8.8 +/- 2.6 to 4.2 +/- 1.5 mm Hg after 1 day. Likewise, quantitative T2-weighed magnetic resonance imaging measurements showed that SU11657-treated mice had reduced intratumoral edema. Our data indicates that inhibition of Akt signaling by antiangiogenic treatment with SU11657 may result in: (a) normalization of tumor blood vessels that cause prerequisite physiologic conditions for subsequent radio/chemotherapy, and (b) direct resensitization of endothelial cells to radio/ chemotherapy. We conclude that trimodal cancer therapy combining antiangiogenesis, chemotherapy, and radiotherapy has beneficial molecular and physiologic effects to emerge as a clinically relevant antitumor strategy
    Type of Publication: Journal article published
    PubMed ID: 15867359
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...