Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: IN-VITRO ; IONIZING-RADIATION ; LUNG-CANCER ; DAMAGE ; sensitivity ; CDNA MICROARRAY ; TOPOISOMERASE-II ; STRAND BREAKS ; alkaline comet assay ; STIMULATED HUMAN-LYMPHOCYTES
    Abstract: DNA repair plays an important role in maintaining genomic integrity, and deficiencies in repair function are known to promote cancer development. Several studies have used the individual capacity to repair DNA damage in peripheral blood lymphocytes (PBLs) as a cancer risk marker. As the cell's ability to remove DNA damage may be correlated with proliferative activity, it is an important question whether quiescent or dividing cells should be used in such studies. The aim of our study was to compare DNA repair capacity and expression profiles of 70 known DNA repair genes, both in resting and phytohemagglutinin (PHA) stimulated human PBLs. Using the comet assay, gamma-radiation-induced DNA damage and repair in lymphocytes was analyzed. No difference, neither in the rate of radiation-induced DNA damage nor in DNA repair capacity between PHA-stimulated and non-stimulated PBLs was observed. Stimulated cells, however, showed significantly elevated values for background damage. Transcriptional profiles of repair genes were analyzed using cDNA arrays. Hybridization experiments were performed with mRNA isolated from both unstimulated and PHA-stimulated PBLs. More than 70% of all evaluated genes had constant expression levels. Twelve genes responded with a more than two-fold increase of transcripts to the mitogenic stimulus. Most of the up-regulated repair enzymes are also known to play a role in DNA replication. In conclusion, the data presented here suggest that all repair proteins needed for the repair of gamma-irradiation induced DNA-damage, that can be detected by the alkaline comet assay, are already present in G0 cells at sufficient amounts and do not need to be induced once lymphocytes are stimulated to start cycling. Our results thus do not support a general increase in DNA repair activity of PBLs by PHA stimulation, and the use of stimulated PBLs in molecular epidemiological studies on DNA repair of gamma-irradiation induced DNA damage seems not to be mandatory.
    Type of Publication: Journal article published
    PubMed ID: 12509255
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: 3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:CT:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:CT:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers' lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity.
    Type of Publication: Journal article published
    PubMed ID: 26723900
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
    Type of Publication: Journal article published
    PubMed ID: 27062014
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride (LPS) of primary splenocytes obtained from two different Ogg1-/- mouse strains. We found that the induction of TNF-alpha expression was reduced in splenocytes (in particular macrophages) of both Ogg1-/- strains. Notably, an inhibitor of LSD1, OG-L002, reduced the induction of TNF-alpha mRNA in splenocytes from wild-type mice to the level observed in splenocytes from Ogg1-/- mice and had no influence in the latter cells. In contrast, inhibitors of the MAP kinases p38 and JNK as well as the antioxidant N-acetylcysteine attenuated the LPS-stimulated TNF-alpha expression both in the absence and presence of OGG1. The free base 8-oxo-7,8-dihydroguanine had no influence on the TNF-alpha expression in the splenocytes. The data demonstrate that OGG1 plays a role in an LSD1-dependent pathway of LPS-induced macrophage activation in mice.
    Type of Publication: Journal article published
    PubMed ID: 28843610
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: CANCER ; SURVIVAL ; CELL LUNG-CANCER ; MODEL ; PATHWAY ; COHORT ; DISEASE ; MORTALITY ; RISK ; GENE ; DNA ; ASSOCIATION ; VARIANTS ; genetics ; DAMAGE ; ATHEROSCLEROSIS ; DNA repair ; HOMOLOGOUS RECOMBINATION ; molecular epidemiology ; VARIANT ; ALLELES ; GENOTYPE ; prospective ; prospective study ; REPAIR GENES ; XRCC3 ; GENE POLYMORPHISMS ; ELEVATED LEVELS
    Abstract: We followed-up for mortality and cancer incidence 1088 healthy non-smokers from a population-based study, who were characterized for 22 variants in 16 genes involved in DNA repair pathways. Follow-up was 100% complete. The association between polymorphism and mortality or cancer incidence was analyzed using Cox Proportional Hazard regression models. Ninety-five subjects had died in a median follow-up time of 78 months (inter-quartile range 59-93 months). None of the genotypes was clearly associated with total mortality, except variants for two Double-Strand Break DNA repair genes, XRCC3 18067 C 〉 T (rs#861539) and XRCC2 31479 G 〉 A (rs#3218536). Adjusted hazard ratios were 2.25 (1.32-3.83) for the XRCC3 C/T genotype and 2.04 (1.00-4.13) for the T/T genotype (reference C/C), and 2.12 (1.14-3.97) for the XRCC2 G/A genotype (reference G/G). For total cancer mortality, the adjusted hazard ratios were 3.29 (1.23-7.82) for XRCC3 C/T, 2.84 (0.81-9.90) for XRCC3 T/T and 3.17 (1.21-8.30) for XRCC2 G/A. With combinations of three or more adverse alleles, the adjusted hazard ratio for all cause mortality was 17.29 (95% C.I. 8.13-36.74), and for all incident cancers the HR was 5.28 (95% C.I. 2.17-12.85). Observations from this prospective study suggest that polymorphisms of genes involved in the repair of DNA double-strand breaks significantly influence the risk of cancer and non-cancer disease, and call influence mortality. (C) 2008 Elsevier B.V. All rights reserved
    Type of Publication: Journal article published
    PubMed ID: 18824251
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...