Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: PEPTIDE ; CELLS ; EXPRESSION ; CELL ; Germany ; KINASE ; DEATH ; GENE ; GENE-EXPRESSION ; GENES ; PROTEIN ; NF-KAPPA-B ; FAMILY ; INDUCTION ; INTERVENTION ; PROTEIN-KINASE ; SEQUENCE ; SEQUENCES ; TARGET ; MOUSE ; IDENTIFICATION ; gene expression ; CELL-DEATH ; NUMBER ; PRODUCT ; OVEREXPRESSION ; RAT-BRAIN ; P21(WAF1/CIP1) ; CYCLIN G1 ; differential display,focal cerebral ischaemia,gene expression,middle cerebral artery occlusion,mouse ; PHOSPHORYLATES HUMAN CDC25C ; SERINE-216
    Abstract: Cerebral ischaemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes after 90 min and 24 h of permanent focal ischaemia in the mouse by an advanced fragment display technique (restriction-mediated differential display). We identified 56 transcriptionally altered genes, many of which provide novel hints to ischaemic pathophysiology. Particularly interesting were two pro-apoptotic genes (Grim19 and Tdag51), whose role in cerebral ischaemia and neuronal cell death has not been recognized so far. Among the unknown sequences, we identified a gene that was rapidly and transiently up-regulated. The encoded protein displayed high homology to the MARK family of serine-threonine protein kinases and has recently been described as MARKL1/MARK4. Here we demonstrate that this protein is a functional protein kinase with the ability to specifically phosphorylate a cognate peptide substrate for the AMP-kinase family. Upon overexpression in heterologous cells, the functional wild-type protein, but not its kinase-dead mutant, led to decreased cell viability. We conclude that the up-regulation of this kinase during focal ischaemia may represent an interesting new target for pharmacological intervention
    Type of Publication: Journal article published
    PubMed ID: 15009667
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: SURVIVAL ; IN-VIVO ; DIFFERENTIATION ; BETA ; BRAIN-TUMORS ; human glioma ; TUMORIGENICITY ; SELF-RENEWAL ; INITIATING CELLS ; Niche
    Abstract: Human glioblastomas may be hierarchically organized. Within this hierarchy, glioblastoma-initiating cells have been proposed to be more resistant to radiochemotherapy and responsible for recurrence. Here, established stem cell markers and stem cell attributed characteristics such as self-renewal capacity and tumorigenicity have been profiled in primary glioblastoma cultures to predict radiosensitivity. Furthermore, the sensitivity to radiotherapy of different subpopulations within a single primary glioblastoma culture was analyzed by a flow cytometric approach using Nestin, SRY (sex-determining region Y)-box 2 (SOX2) and glial fibrillary acidic protein. The protein expression of Nestin and SOX2 as well as the mRNA levels of Musashi1, L1 cell adhesion molecule, CD133, Nestin, and pleiomorphic adenoma gene-like 2 inversely correlated with radioresistance in regard to the clonogenic potential. Only CD44 protein expression correlated positively with radioresistance. In terms of proliferation, Nestin protein expression and Musashi1, pleiomorphic adenoma gene-like 2, and CD133 mRNA levels are inversely correlated with radioresistance. Higher expression of stem cell markers does not correlate with resistance to radiochemotherapy in the cancer genome atlas glioblastoma collective. SOX2 expressing subpopulations exist within single primary glioblastoma cultures. These subpopulations predominantly form the proliferative pool of the primary cultures and are sensitive to irradiation. Thus, profiling of established stem cell markers revealed a surprising result. Except CD44, the tested stem cell markers showed an inverse correlation between expression and radioresistance. Markers used to define glioma-initiating cells (GIC) are generally not defining a more resistant, but rather a more sensitive group of glioma cells. An exemption is CD44 expression. Also proliferation of the GIC culture itself was not systematically associated with radiosensitivity or - resistance, but a SOX-2 positive, proliferative subgroup within a GIC culture is showing the highest radiosensitivity.
    Type of Publication: Journal article published
    PubMed ID: 24976529
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements.
    Type of Publication: Journal article published
    PubMed ID: 26756400
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: RECEPTOR ; APOPTOSIS ; EXPRESSION ; GROWTH ; GROWTH-FACTOR ; IN-VITRO ; Germany ; IN-VIVO ; MODEL ; MODELS ; THERAPY ; VITRO ; VIVO ; DISEASE ; GENE ; DRUG ; DIFFERENTIATION ; MICE ; MRI ; BIOLOGY ; TARGET ; MOUSE ; TRANSGENIC MICE ; FIBER ; INSTABILITY ; LENGTH ; NEURITE OUTGROWTH ; INJURY ; G-CSF ; DEFICIENT MICE ; FOCAL CEREBRAL-ISCHEMIA ; HIPPOCAMPAL ; FUNCTIONAL RECOVERY ; spinal cord injury ; HIPPOCAMPAL-NEURONS ; FACTOR G-CSF ; regeneration ; outcome ; SPINAL-CORD-INJURY ; CORTICOSPINAL TRACT ; hematopoietic growth factor ; MANGANESE-ENHANCED MRI ; MOTOR FUNCTION ; PROMOTES RECOVERY ; RESONANCE-IMAGING MEMRI
    Abstract: P〉Granulocyte-colony stimulating factor (G-CSF) is a potent hematopoietic factor that drives differentiation of neutrophilic granulocytes. We have recently shown that G-CSF also acts as a neuronal growth factor, protects neurons in vitro and in vivo, and has regenerative potential in various neurological disease models. Spinal cord injury (SCI) following trauma or secondary to skeletal instability is a terrible condition with no effective therapies available at present. In this study, we show that the G-CSF receptor is up-regulated upon experimental SCI and that G-CSF improves functional outcome in a partial dissection model of SCI. G-CSF significantly decreases apoptosis in an experimental partial spinal transsection model in the mouse and increases expression of the anti-apoptotic G-CSF target gene Bcl-X-L. In vitro, G-CSF enhances neurite outgrowth and branching capacity of hippocampal neurons. In vivo, G-CSF treatment results in improved functional connectivity of the injured spinal cord as measured by Mn2+-enhanced MRI. G-CSF also increased length of the dorsal corticospinal tract and density of serotonergic fibers cranial to the lesion center. Mice treated systemically with G-CSF as well as transgenic mice over-expressing G-CSF in the CNS exhibit a strong improvement in functional outcome as measured by the BBB score and gridwalk analysis. We show that G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. We conclude that G-CSF constitutes a promising and feasible new therapy option for SCI
    Type of Publication: Journal article published
    PubMed ID: 20202082
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Abstract: Human glioblastomas may be hierarchically organized. Within this hierarchy, glioblastoma-initiating cells have been proposed to be more resistant to radiochemotherapy and responsible for recurrence. Here, established stem cell markers and stem cell attributed characteristics such as self-renewal capacity and tumorigenicity have been profiled in primary glioblastoma cultures to predict radiosensitivity. Furthermore, the sensitivity to radiotherapy of different subpopulations within a single primary glioblastoma culture was analyzed by a flow cytometric approach using Nestin, SRY (sex-determining region Y)-box 2 (SOX2) and glial fibrillary acidic protein. The protein expression of Nestin and SOX2 as well as the mRNA levels of Musashi1, L1 cell adhesion molecule, CD133, Nestin, and pleiomorphic adenoma gene-like 2 inversely correlated with radioresistance in regard to the clonogenic potential. Only CD44 protein expression correlated positively with radioresistance. In terms of proliferation, Nestin protein expression and Musashi1, pleiomorphic adenoma gene-like 2, and CD133 mRNA levels are inversely correlated with radioresistance. Higher expression of stem cell markers does not correlate with resistance to radiochemotherapy in the cancer genome atlas glioblastoma collective. SOX2 expressing subpopulations exist within single primary glioblastoma cultures. These subpopulations predominantly form the proliferative pool of the primary cultures and are sensitive to irradiation. Thus, profiling of established stem cell markers revealed a surprising result. Except CD44, the tested stem cell markers showed an inverse correlation between expression and radioresistance. Markers used to define glioma-initiating cells (GIC) are generally not defining a more resistant, but rather a more sensitive group of glioma cells. An exemption is CD44 expression. Also proliferation of the GIC culture itself was not systematically associated with radiosensitivity or - resistance, but a SOX-2 positive, proliferative subgroup within a GIC culture is showing the highest radiosensitivity.
    Type of Publication: Journal article published
    PubMed ID: 24976529
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Abstract: Malignant gliomas and other types of tumors generate a local immunosuppressive microenvironment, which prohibits an effective anti-tumor immune response and promotes tumor growth. Along with others, we have recently demonstrated that catabolism of the essential amino acid tryptophan via tryptophan-2,3-dioxygenase (TDO) is an important mechanism mediating tumor-associated immunosuppression particularly in gliomas. The pathways regulating TDO in tumors, however, are poorly understood. Here we show that prostaglandins enhance TDO expression and enzymatic activity in malignant gliomas via activation of prostaglandin E receptor-4 (EP4). Stimulation with prostaglandin E2 (PGE2 ) up-regulated TDO-mediated kynurenine release in human glioma cell lines while knockdown of the PGE2 receptor EP4 inhibited TDO expression and activity. In human malignant glioma tissue expression of the PGE2 -producing enzyme cyclooxygenase-2 (COX2) and its receptor EP4 were associated with TDO expression both on transcript and protein level. High expression of EP4 correlated with poor survival in malignant glioma patients WHO III-IV. Importantly, treatment of glioma cells with an EP4 inhibitor decreased TDO expression and activity. Moreover, TDO-over-expressing murine gliomas showed increased COX2 and EP4 expression suggesting a positive feedback mechanism in vivo. In summary, targeting EP4 may inhibit - in addition to immunosuppressive COX2 signaling - tryptophan degradation as another important immunosuppressive pathway and thus, could provide a dual clinically relevant immunotherapeutic avenue for the treatment of malignant gliomas. This article is protected by copyright. All rights reserved.
    Type of Publication: Journal article published
    PubMed ID: 26708701
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Abstract: Huntington's disease (HD) is a neurodegenerative condition characterized by pathology in the brain and peripheral tissues. Hyperactivity of the innate immune system, due in part to NFkappaB pathway dysregulation, is an early and active component of HD. Evidence suggests targeting immune disruption may slow disease progression. Laquinimod is an orally active immunomodulator that down-regulates proinflammatory cytokine production in peripheral blood mononuclear cells, and in the brain down-regulates astrocytic and microglial activation by modulating NFkappaB signalling. Laquinimod had beneficial effects on inflammation, brain atrophy and disease progression in multiple sclerosis (MS) in two phase III clinical trials. This study investigated the effects of laquinimod on hyperactive proinflammatory cytokine release and NFkappaB signalling in HD patient myeloid cell cultures. Monocytes from manifest (manHD) and pre-manifest (preHD) HD gene carriers and healthy volunteers (HV) were treated with laquinimod and stimulated with lipopolysaccharide. After 24 h pre-treatment with 5 muM laquinimod, manHD monocytes released lower levels of IL-1beta, IL-5, IL-8, IL-10, IL-13 and TNFalpha in response to stimulation. PreHD monocytes released lower levels of IL-8, IL-10 and IL-13, with no reduction observed in HV monocytes. The effects of laquinimod on dysfunctional NFkappaB signalling in HD was assessed by inhibitor of kappa B (IkappaB) degradation kinetics, nuclear translocation of NFkappaB and interactions between IkappaB kinase (IKK) and HTT, in HD myeloid cells. No differences were observed between laquinimod-treated and untreated conditions. These results provide evidence that laquinimod dampens hyper-reactive cytokine release from manHD and preHD monocytes, with a much reduced effect on HV monocytes. Evidence suggests targeting CNS and peripheral immune disruption may slow Huntington's disease (HD) neurodegenerative processes. The effects of laquinimod, an orally active immunomodulator, on hyperactive cytokine release and dysfunctional NFkappaB signalling in stimulated myeloid cell cultures from pre-manifest and manifest HD gene carriers and healthy volunteers were investigated. Laquinimod dampened cytokine release but did not impact NFkappaB signalling. Read the Editorial Highlight for this article on page 670.
    Type of Publication: Journal article published
    PubMed ID: 26823290
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: SPECTRA ; APOPTOSIS ; CELLS ; EXPRESSION ; GROWTH-FACTOR ; IN-VITRO ; INHIBITOR ; proliferation ; CELL ; Germany ; INHIBITION ; KINASE ; PATHWAY ; DEATH ; PROTEIN ; RELEASE ; ACTIVATION ; LIGAND ; INDUCTION ; BIOLOGY ; MOLECULAR-BIOLOGY ; PHOSPHORYLATION ; PROTEIN-KINASE ; ANTITUMOR-ACTIVITY ; CLEAVAGE ; CELL-DEATH ; INDUCED APOPTOSIS ; SIGNALING PATHWAY ; BETA ; STEM-CELLS ; PROTEIN-KINASE-C ; sensitivity ; AKT ; MULTIPLE-MYELOMA ; CASPASE ; signaling ; CYTOKINE ; molecular biology ; molecular ; GLIOMA ; GLIOMA-CELLS ; SYNTHASE ; SUBSTRATE ; biomarker ; cell death ; caspases ; ENGLAND ; viral ; APO2 LIGAND ; SMALL-MOLECULE ; enzastaurin ; BROAD-SPECTRUM ; ADVANCED CANCER ; AKT PATHWAY ; BETA-INHIBITOR ; glioma-initiating cells ; glycogen synthase kinase 3 beta
    Abstract: The novel protein kinase C-beta inhibitor enzastaurin (ENZA) induced apoptosis in LNT-229 and T98G cells whereas A172 cells were resistant. Further, ENZA reduced proliferation in glioblastoma-initiating cells T 269 and T 323 but did not induce apoptosis. ENZA-induced apoptosis involved cleavage of caspases 3, 8, and 9 and led to mitochondrial cytochrome c release and was strongly suppressed by the broad spectrum caspase inhibitor zVAD-fmk but only slightly by the expression of the viral caspase 1/8 inhibitor cytokine response modifier-A. ENZA did not reduce the phosphorylation of protein kinase B (Akt), but of p70 S6 kinase and of its substrate S6 protein in T98G cells. Inhibition of the phosphatidylinositol 3 kinase signaling pathway did not restore sensitivity of A172 cells towards ENZA, and constitutively active Akt did not protect LNT-229 and T98G cells from ENZA-induced apoptosis. Dephosphorylation of glycogen synthase kinase 3 beta, a biomarker of ENZA action, and cell death induction by ENZA were separately regulated. Inhibition or activation of Akt only weakly modulated ENZA-induced dephosphorylation of glycogen synthase kinase 3 beta. In ENZA-resistant A172 cells, apoptosis ligand 2 (Apo2L.0)-induced cleavage of caspases 3, 8, and 9 was increased by ENZA, resulting in synergistic activity of ENZA and Apo2L.0
    Type of Publication: Journal article published
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: brain ; EXPRESSION ; GENE ; MICE ; CONTRAST ; CREB ; ELEMENT-BINDING PROTEIN ; UP-REGULATION ; CRE ; ADDICTION ; CERULEUS ; locus coeruleus ; LOXP ; cyclic AMP ; morphine dependence ; NIGROSTRIATAL SYSTEM ; OPIATE WITHDRAWAL
    Abstract: P〉Repeated exposure to opiates leads to cellular and molecular changes and behavioral alterations reflecting a state of dependence. In noradrenergic neurons, cyclic AMP (cAMP)-dependent pathways are activated during opiate withdrawal, but their contribution to the activity of locus coeruleus noradrenergic neurons and behavioral manifestations remains controversial. Here, we test whether the cAMP-dependent transcription factors cAMP responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) in noradrenergic neurons control the cellular markers and the physical signs of morphine withdrawal in mice. Using the Cre/loxP system we ablated the Creb1 gene in noradrenergic neurons. To avoid adaptive effects because of compensatory up-regulation of CREM, we crossed the conditional Creb1 mutant mice with a Crem-/- line. We found that the enhanced expression of tyrosine hydroxylase normally observed during withdrawal was attenuated in CREB/CREM mutants. Moreover, the withdrawal-associated cellular hyperactivity and c-fos expression was blunted. In contrast, naloxone-precipitated withdrawal signs, such as jumping, paw tremor, tremor and mastication were preserved. We conclude by a specific genetic approach that the withdrawal-associated hyperexcitability of noradrenergic neurons depends on CREB/CREM activity in these neurons, but does not mediate several behavioral signs of morphine withdrawal
    Type of Publication: Journal article published
    PubMed ID: 20367754
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: brain ; LUNG-CANCER ; TRANSPORT ; CONJUGATE ; DRUG-RESISTANCE ; P-GLYCOPROTEIN ; MICROVESSEL ENDOTHELIAL-CELLS ; CYCLIC-NUCLEOTIDES ; PRIMARY GLIAL CULTURES ; GLUTATHIONE SYSTEM
    Abstract: Multidrug resistance proteins (Mrps) are ATP-driven export pumps that mediate the export of organic anions from cells. So far only little information is available on expression and physiological functions of Mrps in brain. The expression of mRNAs of six Mrp paralogs in rat brain, as well as in rat cultures enriched for neurones, astrocytes, oligodendrocytes and microglial cells, was studied by qualitative and semiquantitative RT-PCR analysis. In adult rat brain as well as in neural cell cultures the mRNAs coding for Mrp1, Mrp3, Mrp4 and Mrp5 were detected. Semiquantitative analysis revealed that the mRNAs coding for Mrp1 and Mrp5 were more abundant in the four cell culture types than mRNAs of the other Mrps. mRNAs coding for Mrp3 and Mrp4 were found at significant levels in cultured astrocytes and microglial cells, whereas cultures of neurones and oligodendrocytes contained only marginal quantities of these mRNAs. Putative physiological functions of Mrps in brain cells are discussed.
    Type of Publication: Journal article published
    PubMed ID: 12153495
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...