Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: 3, ADIPOSE-TISSUE, ALLELES, CANDIDATE GENE, CLONING, collagen, COMBINATION, diabetes, DOMAIN, DOMAIN
    Abstract: Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Kruppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes
    Type of Publication: Journal article published
    PubMed ID: 19578398
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Epigenetic changes are widely considered to play an important role in aging, but experimental evidence to support this hypothesis has been scarce. We have used array-based analysis to determine genome-scale DNA methylation patterns from human skin samples and to investigate the effects of aging, chronic sun exposure, and tissue variation. Our results reveal a high degree of tissue specificity in the methylation patterns and also showed very little interindividual variation within tissues. Data stratification by age revealed that DNA from older individuals was characterized by a specific hypermethylation pattern affecting less than 1% of the markers analyzed. Interestingly, stratification by sun exposure produced a fundamentally different pattern with a significant trend towards hypomethylation. Our results thus identify defined age-related DNA methylation changes and suggest that these alterations might contribute to the phenotypic changes associated with skin aging.
    Type of Publication: Journal article published
    PubMed ID: 20523906
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: LUNG-CANCER ; SUSCEPTIBILITY LOCUS ; NECK-CANCER ; pooled analysis ; FAMILY-HISTORY ; ALCOHOL-DRINKING ; EPIDEMIOLOGY CONSORTIUM ; INTERNATIONAL HEAD ; SENSITIVITY PROTEIN MUS308 ; TOBACCO-RELATED CANCERS
    Abstract: Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p 〈= 5 x 10(-7)). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1 x 10(-8)) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2 x 10(-8)) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 x 10(-8); rs1229984-ADH1B, p = 7 x 10(-9); and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility
    Type of Publication: Journal article published
    PubMed ID: 21437268
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: APOPTOSIS ; EXPRESSION ; LIGAND ; FAMILY ; T-CELLS ; CELL-DEATH ; LYMPHOCYTES ; IMMUNE-SYSTEM ; AFRICAN CHILDREN ; PLASMODIUM-FALCIPARUM MALARIA
    Abstract: Human genetics and immune responses are considered to critically influence the outcome of malaria infections including life-threatening syndromes caused by Plasmodium falciparum. An important role in immune regulation is assigned to the apoptosis-signaling cell surface receptor CD95 (Fas, APO-1), encoded by the gene FAS. Here, a candidate-gene association study including variant discovery at the FAS gene locus was carried out in a case-control group comprising 1,195 pediatric cases of severe falciparum malaria and 769 unaffected controls from a region highly endemic for malaria in Ghana, West Africa. We found the A allele of c. -436C〉A (rs9658676) located in the promoter region of FAS to be significantly associated with protection from severe childhood malaria (odds ratio 0.71, 95% confidence interval 0.58-0.88, p(empirical) = 0.02) and confirmed this finding in a replication group of 1,412 additional severe malaria cases and 2,659 community controls from the same geographic area. The combined analysis resulted in an odds ratio of 0.71 (95% confidence interval 0.62-0.80, p = 1.8x10(-7), n = 6035). The association applied to c. -436AA homozygotes (odds ratio 0.47, 95% confidence interval 0.36-0.60) and to a lesser extent to c. -436AC heterozygotes (odds ratio 0.73, 95% confidence interval 0.63-0.84), and also to all phenotypic subgroups studied, including severe malaria anemia, cerebral malaria, and other malaria complications. Quantitative FACS analyses assessing CD95 surface expression of peripheral blood mononuclear cells of naive donors showed a significantly higher proportion of CD69(+)CD95(+) cells among persons homozygous for the protective A allele compared to AC heterozygotes and CC homozygotes, indicating a functional role of the associated CD95 variant, possibly in supporting lymphocyte apoptosis
    Type of Publication: Journal article published
    PubMed ID: 21625619
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: brain ; RECEPTOR ; CELLS ; EXPRESSION ; proliferation ; GENE ; GENE-EXPRESSION ; GENES ; PROTEIN ; DIFFERENTIATION ; TISSUE ; MICE ; NITRIC-OXIDE SYNTHASE ; MECHANISM ; MESSENGER-RNA ; PROGRESSION ; genetics ; inactivation ; MUTATIONS ; LOCALIZATION ; HUMAN HOMOLOG ; NEURITE OUTGROWTH ; CHILDREN ; PRECURSORS ; MORPHOGENESIS ; POSTTRANSCRIPTIONAL REGULATION ; TUMORIGENESIS ; SUBVENTRICULAR ZONE ; TUMOR SUPPRESSORS ; CEREBELLAR DEVELOPMENT ; GROWTH-ASSOCIATED PROTEIN-43 ; REGULATES PROLIFERATION
    Abstract: Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression
    Type of Publication: Journal article published
    PubMed ID: 22438824
    Signatur Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: DNA methylation ; FACTOR-KAPPA-B ; CHRONIC LYMPHOCYTIC-LEUKEMIA ; DISEASE PROGRESSION ; CHROMOSOME 13Q14 ; TUMOR-SUPPRESSOR LOCUS ; LONG NONCODING RNAS ; PROMOTER CPG METHYLATION ; PI3K/NF-KAPPA-B PATHWAY ; ANTISENSE TRANSCRIPTS
    Abstract: Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA-mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.
    Type of Publication: Journal article published
    PubMed ID: 23593011
    Signatur Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: GENE-EXPRESSION ; ELEMENT-BINDING PROTEIN ; MASS-SPECTROMETRY ; ADIPOSE-TISSUE ; INSULIN-RESISTANCE ; GLUCOSE-METABOLISM ; HEART 6-PHOSPHOFRUCTO-2-KINASE ; KINASE B ; CHREBP ; MONDOA
    Abstract: Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Kruppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources.
    Type of Publication: Journal article published
    PubMed ID: 23593032
    Signatur Availability
    BibTip Others were also interested in ...
  • 8
    Keywords: SACCHAROMYCES-CEREVISIAE ; gene amplification ; UBIQUITIN LIGASE ; S-PHASE ; TERMINAL DIFFERENTIATION ; ANAPHASE-PROMOTING COMPLEX ; HISTONE H3 ; MITOTIC CYCLINS ; QUIESCENT CELLS ; G(1) CONTROL
    Abstract: The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.
    Type of Publication: Journal article published
    PubMed ID: 24086162
    Signatur Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: EXPRESSION ; PROTEIN ; MICE ; IDENTIFICATION ; CHILDREN ; DNA methyltransferase ; EMBRYONIC STEM-CELLS ; ROLES ; REPEAT HYPOTHESIS ; TSIX ; EARLY MOUSE EMBRYOS ; GENOMIC METHYLATION PATTERNS ; PREIMPLANTATION DEVELOPMENT ; SOMATIC FORM
    Abstract: The maintenance of key germline derived DNA methylation patterns during preimplantation development depends on stores of DNA cytosine methyltransferase-1o (DNMT1o) provided by the oocyte. Dnmt1o(mat-/-) mouse embryos born to Dnmt1(Delta 1o/Delta 1o) female mice lack DNMT1o protein and have disrupted genomic imprinting and associated phenotypic abnormalities. Here, we describe additional female-specific morphological abnormalities and DNA hypomethylation defects outside imprinted loci, restricted to extraembryonic tissue. Compared to male offspring, the placentae of female offspring of Dnmt1(Delta 1o/Delta 1o) mothers displayed a higher incidence of genic and intergenic hypomethylation and more frequent and extreme placental dysmorphology. The majority of the affected loci were concentrated on the X chromosome and associated with aberrant biallelic expression, indicating that imprinted X-inactivation was perturbed. Hypomethylation of a key regulatory region of Xite within the X-inactivation center was present in female blastocysts shortly after the absence of methylation maintenance by DNMT1o at the 8-cell stage. The female preponderance of placental DNA hypomethylation associated with maternal DNMT1o deficiency provides evidence of additional roles beyond the maintenance of genomic imprints for DNA methylation events in the preimplantation embryo, including a role in imprinted X chromosome inactivation
    Type of Publication: Journal article published
    PubMed ID: 24278026
    Signatur Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: carcinoma ; RISK ; LINKAGE ; SUSCEPTIBILITY GENES ; genetics ; METAANALYSIS ; LOCI ; GENOME-WIDE SCAN ; INTERNATIONAL CONSORTIUM ; G84E MUTATION
    Abstract: Genome-wide association studies (GWAS) have identified numerous low penetrance disease susceptibility variants, yet few causal alleles have been unambiguously identified. The underlying causal variants are expected to be predominantly common; however synthetic associations with rare, higher penetrance variants have been hypothesised though not yet observed. Here, we report detection of a novel common, low penetrance prostate cancer association at the HOXB locus at ch17q and show that this signal can actually be attributed to a previously identified rare, moderate penetrance coding variant (G84E) in HOXB13. This study therefore provides the first experimental evidence for the existence of synthetic associations in cancer and shows that where GWAS signals arise through this phenomenon, risk predictions derived using the tag SNP would substantially underestimate the relative risk conferred and overestimate the number of carriers of the causal variant. Synthetic associations at GWAS signals could therefore account for a proportion of the missing heritability of complex diseases. The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62x10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
    Type of Publication: Journal article published
    PubMed ID: 24550738
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...