Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    facet.materialart.
    Seminars in Immunopathology 38 (1), 97-112 
    Abstract: Lupus erythematosus (LE) is a multifactorial autoimmune disease with clinical manifestations of differing severity. The exact pathomechanisms and interactions resulting in the inflammatory and immunological processes of this heterogeneous disease remain elusive. Approaches in the understanding of the pathomechanisms revealed that the clinical expression of LE is predisposed by susceptibility genes and that various environmental factors are responsible for an abnormal immune response. Several studies demonstrated that ultraviolet (UV) light is one of the major factors in the pathogenesis of the disease. Standardized photoprovocation in patients with LE has been shown to be a safe and efficient model for evaluating the underlying pathomechanisms which lead to the production of autoantibodies and immune complexes. In particular, interferons were defined as important players in the early activation of the immune system and were observed to play a specific role in the immunological interface between the innate and the adaptive immune system. Abnormalities or disturbances in the different processes of cell death, such as apoptosis or necrosis, have also been recognized as crucial in the pathogenesis of LE. Although each process is different and characterized by unique features, the processes are interrelated and result in a complex disease.
    Type of Publication: Journal article published
    PubMed ID: 26637330
    Signatur Availability
    BibTip Others were also interested in ...
  • 2
    Abstract: Characterizing the interaction of cancer cells with the host adaptive immune system is critical for understanding tumor immunology and the modus operandi of immunotherapeutic interventions to treat cancer. As the key cellular effectors of adaptive immunity, T cells are endowed with specialized receptors (the T cell receptor; TCR), to recognize and to eliminate cancer cells. The diversity of the TCR repertoire results from specialized genetic diversification mechanisms that generate an incredible variability allowing recognizing extensive collections of antigens. Based on the attainment and function of the TCR, the TCR repertoire is a mirror of the human immune response, and the dynamic changes of its usage can be assumed as a promising biomarker to monitor immunomodulatory therapies. Recent advances in multiplexed PCR amplification and massive parallel sequencing technologies have facilitated the characterization of TCR repertoires at high resolution even when only biomaterial of limited quantity and quality, such as formalin-fixed paraffin-embedded (FFPE) archived tissues, is available. Here, we review the concept framework and current experimental approaches to characterize the TCR repertoire usage in cancer including inherent technical and biological challenges.
    Type of Publication: Journal article published
    PubMed ID: 28074285
    Signatur Availability
    BibTip Others were also interested in ...
  • 3
    Abstract: Tumor progression is known to be supported by chronic inflammatory conditions developed in the tumor microenvironment. It is characterized by the long-term secretion of various inflammatory soluble factors (including cytokines, chemokines, growth factors, reactive oxygen and nitrogen species, prostaglandins, etc.) and strong leukocyte infiltration. Among leukocytes infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression and supporting tumor escape. These cells can strongly inhibit antitumor immune reactions mediated by T cells and NK cells. Moreover, MDSCs are generated, recruited to the tumor site, and activated not only under the influence of soluble inflammatory mediators but also due to extracellular vesicles (EVs) secreted by tumor cells. EVs play a key role in the formation of MDSCs via the conversion of normal myeloid cells and altering the normal myelopoiesis. In addition, EVs help create a suitable microenvironment for the metastatic process.
    Type of Publication: Journal article published
    PubMed ID: 27787613
    Signatur Availability
    BibTip Others were also interested in ...
  • 4
    Abstract: Tumor progression is known to be supported by chronic inflammatory conditions developed in the tumor microenvironment. It is characterized by the long-term secretion of various inflammatory soluble factors (including cytokines, chemokines, growth factors, reactive oxygen and nitrogen species, prostaglandins, etc.) and strong leukocyte infiltration. Among leukocytes infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression and supporting tumor escape. These cells can strongly inhibit antitumor immune reactions mediated by T cells and NK cells. Moreover, MDSCs are generated, recruited to the tumor site, and activated not only under the influence of soluble inflammatory mediators but also due to extracellular vesicles (EVs) secreted by tumor cells. EVs play a key role in the formation of MDSCs via the conversion of normal myeloid cells and altering the normal myelopoiesis. In addition, EVs help create a suitable microenvironment for the metastatic process.
    Type of Publication: Journal article epub ahead of print
    PubMed ID: 27787613
    Signatur Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: DENDRITIC CELLS ; NECROSIS-FACTOR-ALPHA ; ADIPOSE-TISSUE ; MAST-CELLS ; NONALCOHOLIC STEATOHEPATITIS ; DIET-INDUCED OBESITY ; FATTY LIVER-DISEASE ; INDUCED INSULIN-RESISTANCE ; KILLER T-CELLS ; INVARIANT NKT CELLS
    Abstract: Throughout evolution, effective nutrient sensing and control of systemic energy homeostasis have relied on a close physical and functional interaction between immune and metabolically active cells. However, in today's obesogenic environment, this fine-tuned immunometabolic interface is perturbed. As a consequence, chronic inflammatory conditions and aberrant activation of immune cells have emerged as key features of obesity-related metabolic disorders, including insulin resistance, cardiovascular complications, and type 2 diabetes, whereas a major research focus has been placed on the adipocyte-macrophage interaction in the context of metabolic dysfunction; recent studies have not only expanded the scope of relevant immune cells in this setting but also highlight the impact of distinct metabolic organs, including the liver, on immunometabolic control, metabolic disease development, and potential anti-inflammatory therapeutic options in obesity-driven pathologies. This review will thus summarize recent progress in this emerging area of metabolic research.
    Type of Publication: Journal article published
    PubMed ID: 24212254
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...