Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2018-08-24
    Description: Quantum states of quasiparticles in solids are dictated by symmetry. We have experimentally demonstrated quantum states of Dirac electrons in a two-dimensional quasicrystal without translational symmetry. A dodecagonal quasicrystalline order was realized by epitaxial growth of twisted bilayer graphene rotated exactly 30°. We grew the graphene quasicrystal up to a millimeter scale on a silicon carbide surface while maintaining the single rotation angle over an entire sample and successfully isolated the quasicrystal from a substrate, demonstrating its structural and chemical stability under ambient conditions. Multiple Dirac cones replicated with the 12-fold rotational symmetry were observed in angle-resolved photoemission spectra, which revealed anomalous strong interlayer coupling with quasi-periodicity. Our study provides a way to explore physical properties of relativistic fermions with controllable quasicrystalline orders.
    Keywords: Physics, Applied, Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...