Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Publication Date: 2016-01-19
    Description: Many procedures in modern clinical medicine rely on the use of electronic implants in treating conditions that range from acute coronary events to traumatic injury. However, standard permanent electronic hardware acts as a nidus for infection: bacteria form biofilms along percutaneous wires, or seed haematogenously, with the potential to migrate within the body and to provoke immune-mediated pathological tissue reactions. The associated surgical retrieval procedures, meanwhile, subject patients to the distress associated with re-operation and expose them to additional complications. Here, we report materials, device architectures, integration strategies, and in vivo demonstrations in rats of implantable, multifunctional silicon sensors for the brain, for which all of the constituent materials naturally resorb via hydrolysis and/or metabolic action, eliminating the need for extraction. Continuous monitoring of intracranial pressure and temperature illustrates functionality essential to the treatment of traumatic brain injury; the measurement performance of our resorbable devices compares favourably with that of non-resorbable clinical standards. In our experiments, insulated percutaneous wires connect to an externally mounted, miniaturized wireless potentiostat for data transmission. In a separate set-up, we connect a sensor to an implanted (but only partially resorbable) data-communication system, proving the principle that there is no need for any percutaneous wiring. The devices can be adapted to sense fluid flow, motion, pH or thermal characteristics, in formats that are compatible with the body's abdomen and extremities, as well as the deep brain, suggesting that the sensors might meet many needs in clinical medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seung-Kyun -- Murphy, Rory K J -- Hwang, Suk-Won -- Lee, Seung Min -- Harburg, Daniel V -- Krueger, Neil A -- Shin, Jiho -- Gamble, Paul -- Cheng, Huanyu -- Yu, Sooyoun -- Liu, Zhuangjian -- McCall, Jordan G -- Stephen, Manu -- Ying, Hanze -- Kim, Jeonghyun -- Park, Gayoung -- Webb, R Chad -- Lee, Chi Hwan -- Chung, Sangjin -- Wie, Dae Seung -- Gujar, Amit D -- Vemulapalli, Bharat -- Kim, Albert H -- Lee, Kyung-Mi -- Cheng, Jianjun -- Huang, Younggang -- Lee, Sang Hoon -- Braun, Paul V -- Ray, Wilson Z -- Rogers, John A -- F31MH101956/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea. ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Institute of High Performance Computing, Singapore 138632, Singapore. ; Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Biomicrosystem Technology, Korea University, Seoul 136-701, South Korea. ; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, South Korea. ; Weldon School of Biomedical Engineering, School of Mechanical Engineering, The Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. ; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA. ; Department of Mechanical Engineering, Civil and Environmental Engineering, Materials Science and Engineering, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208, USA. ; Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 136-703, South Korea. ; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="" target="_blank"〉PubMed〈/a〉
    Keywords: *Absorbable Implants/adverse effects ; Administration, Cutaneous ; Animals ; Body Temperature ; Brain/*metabolism/surgery ; Electronics/*instrumentation ; Equipment Design ; Hydrolysis ; Male ; Monitoring, Physiologic/adverse effects/*instrumentation ; Organ Specificity ; Pressure ; *Prostheses and Implants/adverse effects ; Rats ; Rats, Inbred Lew ; *Silicon ; Telemetry/instrumentation ; Wireless Technology/instrumentation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...