Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...