Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: RECEPTOR ; CELLS ; EXPRESSION ; CELL ; Germany ; VOLUME ; TISSUE ; MICE ; INJURIES ; kidney ; MACROPHAGES ; MECHANISM ; REDUCTION ; renal ; CONTRAST ; INTERVENTION ; T cell ; T cells ; T-CELL ; T-CELLS ; FLOW ; fibroblasts ; TARGET ; LYMPHOCYTES ; WILD-TYPE ; RECRUITMENT ; leukocyte ; glomerulonephritis ; NEPHROPATHY ; FLOW-CYTOMETRY ; chemokine ; ANTAGONIST ; INJURY ; HOST-DEFENSE ; CHEMOKINE RECEPTOR ; fibrosis ; INFILTRATION ; fibroblast ; flow cytometry ; collagen ; CCR5 ; INTERSTITIAL FIBROSIS ; MACROPHAGE-INFLAMMATORY PROTEIN-1-ALPHA ; MICE LACKING ; OBSTRUCTION ; TRANSPLANT REJECTION
    Abstract: As chemokine receptor CCR1 and CCR5 expression on circulating leukocytes is thought to contribute to leukocyte recruitment during renal fibrosis, the authors examined the effects of unilateral ureteral obstruction (UUO) in mice deficient for CCR1 or CCR5. Analysis of UUO kidneys from CCR1-deficient mice revealed a reduction of interstitial macrophages and lymphocytes (35% and 55%, respectively) compared with wild-type controls. CCR1-deficient mice had reduced CCR5 mRNA levels in UUO kidneys, which correlated with a reduction of CCR5+ T cell infiltrate as determined by flow cytometry. Interstitial fibroblasts, renal TGF-beta1 mRNA expression, interstitial volume, and collagen I deposits were all significantly reduced in CCR1-deficient mice. In contrast, renal leukocytes and fibrosis were unaffected in CCR5-deficient mice with UUO. However, if treated with the CCR1 antagonist BX471, CCR5-deficient mice showed a similar reduction of renal leukocytes and fibrosis as CCR1-deficient mice. To determine the underlying mechanism labeled macrophages and T cells isolated from either wild-type, CCR1-deficient, or CCR5-deficient mice were injected into wild-type mice with UUO. Three hours later, renal cell recruitment was reduced for CCR1-deficient cells or cells pretreated with BX471 compared with CCR5-deficient or wild-type cells. Thus, CCR1 but not CCR5 is required for leukocyte recruitment and fibrosis after UUO in mice. Therefore, CCR1 is a promising target for therapeutic intervention in leukocyte-mediated fibrotic tissue injury, e.g. progressive renal fibrosis
    Type of Publication: Journal article published
    PubMed ID: 14747380
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...