Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Keywords: Germany ; LUNG ; DIAGNOSIS ; segmentation ; DISEASE ; RESOLUTION ; TRANSPLANTATION ; MRI ; MAGNETIC-RESONANCE ; magnetic resonance imaging ; prevention ; MOTION ; dynamic MRI ; MANAGEMENT ; MOVEMENT ; SCIENCE ; breathing cycle ; HEALTHY-SUBJECTS ; SPIROMETRY ; volumetry ; RESPIRATORY MOTION ; MR-compatible spirometry ; respiratory mechanics ; GLOBAL STRATEGY
    Abstract: Rationale and Objectives: Most lung disease is inhomogeneously distributed but diagnosed by global spirometry. Regional lung function might allow for earlier diagnosis. Dynamic two-dimensional magnetic resonance imaging (2D-MRI) can depict lung motion with high temporal resolution. We evaluated whether measurement of lung area on dynamic 2D-MRI has sufficient agreement with spirometry to allow for lung function testing of single lungs. Material and Methods: Ten healthy volunteers were examined in a 1.5 T MRI scanner with a Flash 2D-sequence (8.5 images per second, sagittal and coronal orientation) with simultaneous spirometry. The lung area was segmented semiautomatically and the area changes were compared with spirometric volume changes. Results: Segmentation of one time series took 191 seconds on average. Volume-time and flow-volume curves from MRI data were almost congruent with spirometric curves. Pearson correlation of MRI area with spirometry was very high (mean correlation coefficients 〉0.97). Bland-Altman plots showed good agreement of lung area with spirometry (95% limits of agreement below 11% in each direction). Differences between lung area and spirometry were significantly smaller for sagittal measurement of the right lung than sagittal measurement of the left lung and coronal measurement. The relative forced expiratory volume in the first second differed less than 5% between MRI and spirometry in all but one volunteer. Conclusions: Measurement of lung area on 2D-MRI allows for functional measurement of single lungs with good agreement to spirometry. Postprocessing is fast enough for application in a clinical context and possibly provides increased sensitivity for lung functional measurement of inhomogeneously distributed lung disease
    Type of Publication: Journal article published
    PubMed ID: 20138554
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...