Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: CANCER ; EXPRESSION ; TUMORS ; RECURRENCE ; REVEALS ; nucleolus ; MYB-BINDING PROTEIN
    Abstract: ABSTRACT: BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent and lethal cancers worldwide and mortality mostly results from loco-regional recurrence and metastasis. Despite its significance, our knowledge on molecular, cellular and environmental mechanisms that drive disease pathogenesis remains largely elusive, and there are limited therapeutic options, with only negligible clinical benefit. METHODS: We applied global gene expression profiling with samples derived from a recently established mouse model for oral cancer recurrence and identified a list of genes with differential expression between primary and recurrent tumors. RESULTS: One differentially expressed gene codes for Myb-binding protein 1a (MYBBP1A), which is known as a transcriptional co-regulator that physically interacts with nuclear transcription factors, such as NFkappaB and p53. We confirmed significantly reduced MYBBP1A protein levels on tissue sections of recurrent mouse tumors compared to primary tumors by immunohistochemistry, and found aberrant MYBBP1A protein levels also in tumor samples of HNSCC patients. Interestingly, silencing of MYBBP1A expression in murine SCC7 and in human HNSCC cell lines elicited increased migration but decreased cell growth. CONCLUSION: We provide experimental evidence that MYBBP1A is an important molecular switch in the regulation of tumor cell proliferation versus migration in HNSCC and it will be a major challenge for the future to proof the concept whether regulation MYBBP1A expression and/or function could serve as a novel option for anti-cancer therapy.
    Type of Publication: Journal article published
    PubMed ID: 22339894
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...