Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Abstract: Endometrial cancer (EC) is the fourth most frequent cancer in women in Europe, and as its incidence is increasing, prevention strategies gain further pertinence. Risk prediction models can be a useful tool for identifying women likely to benefit from targeted prevention measures. On the basis of data from 201,811 women (mostly aged 30-65 years) including 855 incident EC cases from eight countries in the European Prospective Investigation into Cancer and Nutrition cohort, a model to predict EC was developed. A step-wise model selection process was used to select confirmed predictive epidemiologic risk factors. Piece-wise constant hazard rates in 5-year age-intervals were estimated in a cause-specific competing risks model, five-fold-cross-validation was applied for internal validation. Risk factors included in the risk prediction model were body-mass index (BMI), menopausal status, age at menarche and at menopause, oral contraceptive use, overall and by different BMI categories and overall duration of use, parity, age at first full-term pregnancy, duration of menopausal hormone therapy and smoking status (specific for pre, peri- and post-menopausal women). These variables improved the discriminating capacity to predict risk over 5 years from 71 % for a model based on age alone to 77 % (overall C statistic), and the model was well-calibrated (ratio of expected to observed cases = 0.99). Our model could be used for the identification of women at increased risk of EC in Western Europe. To achieve an EC-risk model with general validity, a large-scale cohort-consortium approach would be needed to assess and adjust for population variation.
    Type of Publication: Journal article published
    PubMed ID: 25968175
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...