Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    ISSN: 0887-6266
    Keywords: tensile drawing ; morphology ; polybutylene ; terephthalate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The concept of the drawing of a molecular network has been employed to derive a total network draw ratio from the combination of the two deformations occurring in the production of poly(butylene terephthalate), PBT, fibers by the consecutive processes of melt spinning and cold drawing. The mechanical properties of PBT can then be more readily explained in terms of increases in this total network draw ratio. However, the preorientation and crystallization that occurs in the melt-spinning process can occur at different strain rates and temperatures, depending on the wind up speed employed, on the extensional viscosity of the polymer, and on the variation of the extensional viscosity with temperature. Therefore, for polymers such as poly(butylene terephthalate), which can exist in two crystalline forms, the morphology of the final drawn fiber might be expected to depend on the first melt-spinning stage of the process as well as on the total network draw ratio. In this work, density, birefringence, mechanical measurements, and WAXD measurements, which have been made on the melt-spun fibers and on the drawn fibers, are described. Small differences in some of the drawn yarn mechanical properties at the same overall network draw ratio are related to the crystallinity and in particular to differences in the proportion of the α and β phases present in the drawn yarn. These in turn are related to differences in the temperature and stress during melt spinning and drawing. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2465-2481, 1997
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...