Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2878
    Keywords: Mathematical programming ; nonlinear programming ; inequality constraints ; numerical methods ; descent methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with first-order methods of feasible directions. Pironneau and Polak have recently proved theorems which show that three of these methods have a linear rate of convergence for certain convex problems in which the objective functions have positive definite Hessians near the solutions. In the present note, it is shown that these theorems on rate of convergence can be extended to larger classes of problems. These larger classes are determined in part by certain second-order sufficiency conditions, and they include many nonconvex problems. The arguments used here are based on the finite-dimensional version of Hestenes' indirect sufficiency method.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...