Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    Communications in mathematical physics 25 (1972), S. 190-232 
    ISSN: 1432-0916
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract We investigate the general monomer-dimer partition function,P(x), which is a polynomial in the monomer activity,x, with coefficients depending on the dimer activities. Our main result is thatP(x) has its zeros on the imaginary axis when the dimer activities are nonnegative. Therefore, no monomer-dimer system can have a phase transition as a function of monomer density except, possibly, when the monomer density is minimal (i.e.x=0). Elaborating on this theme we prove the existence and analyticity of correlation functions (away fromx=0) in the thermodynamic limit. Among other things we obtain bounds on the compressibility and derive a new variable in which to make an expansion of the free energy that converges down to the minimal monomer density. We also relate the monomer-dimer problem to the Heisenberg and Ising models of a magnet and derive Christoffell-Darboux formulas for the monomer-dimer and Ising model partition functions. This casts the Ising model in a new light and provides an alternative proof of the Lee-Yang circle theorem. We also derive joint complex analyticity domains in the monomer and dimer activities. Our considerations are independent of geometry and hence are valid for any dimensionality.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...