Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0916
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract This is the first of a series of papers devoted to the derivation of analyticity properties in the non-linear program of general quantum field theory, following the line of the “many particle structure analysis” due to Symanzik. In this preliminary paper, “convolution products” are associated with graphs whose verticesv represent generaln v -point functions. Under convergence assumptions in Euclidean directions, it is proved that any such convolution productH G associated with a graphG withN external lines is well defined as an analytic function of the correspondingN four-momentum variables. The analyticity domain ofH G is proved to contain the correspondingN-point “primitive domain” implied by causality and spectrum and the various real boundary values ofH G satisfy all the relevant linear relations. For appropriate boundary values, the convolution products generalize the perturbative Feynmann prescription. As a by-product of this study, it is proved that in any perturbative theory using “superpropagators” with Euclidean convergence, Feynmann amplitudes that satisfy all the requirements of the linear program can be defined without the help of a regularization.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...