Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 1028-1040 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Single molecule confocal microscopy is used to investigate the detailed kinetics of fluorescence intermittency in colloidal II–VI (CdSe) semiconductor quantum dots. Two distinct modes of behavior are observed corresponding to (i) sustained "on" episodes (τon) of rapid laser absorption/fluorescence cycling, followed by (ii) sustained "off" episodes (τoff) where essentially no light is emitted despite continuous laser excitation. Both on-time and off-time probability densities follow an inverse power law, P(τon/off)∝1/τon/offm, over more than seven decades in probability density and five decades in time. Such inverse power law behavior is an unambiguous signature of highly distributed kinetics with rates varying over 105-fold, in contrast with models for switching between "on" and "off" configurations of the system via single rate constant processes. The unprecedented dynamic range of the current data permits several kinetic models of fluorescence intermittency to be evaluated at the single molecule level and indicate the importance of fluctuations in the quantum dot environment. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...