Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 73 (2002), S. 2038-2043 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This article describes the use of neural networks (NNs) for the on-line computation of the radiated power in JET. The NNs have been trained using a database of about 120 discharges, for which the emitted power had been calculated via tomographic inversion of JET bolometric signals. In addition to the bolometric data, elongation and triangularity have been used as input to the NN, since these provide useful complementary information. Dedicated NNs have been designed for the determination of the total radiated power, the power from the bulk, and from the divertor region. All the NNs have been tested with a set of about 30 discharges with positive results. Moreover, the NNs can operate at full sampling speed and are therefore suited to follow edge localized modes and other rapid phenomena. The sensitivity of the NNs to failures in the input signals has also been tested, proving their robustness. Their possible use in feedback applications is finally briefly discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...