Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Indoor air 4 (1994), S. 0 
    ISSN: 1600-0668
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Medicine
    Notes: Heat, mass and momentum transfer takes place simultaneously in ventilated rooms. For accurate predictions of the indoor environment, all the environmental parameters that influence these transport phenomena should be taken into consideration. This paper introduces a method for a full assessment of indoor thermal comfort using computational fluid dynamics in conjunction with comfort models. A computer program has been developed which can be used for predicting thermal comfort indices such as thermal sensation and draught risk. The sensitivity of predicted comfort indices to environmental parameters is analysed for a mechanically ventilated office. It was found that when the mean radiant temperature was considered uniform in the office, the error in the predicted percentage of dissatisfied (PPD) could be as high as 7.5%. The prediction became worse when the mean radiant temperature was taken to be the same as air temperature point by point in the space. Moreover, disregarding the variation of vapour pressure in the space resulted in an error in PPD of abour 4% near the source of moisture generation.The importance of evaluating both thermal sensation and draught risk is also examined. It is concluded that in spaces with little air movement only the thermal sensation is needed for evaluation of indoor thermal comfort whereas in spaces with air movement induced by mechanical vantilation or air-conditioning systems both thermal sensation and draught risk should be evaluated.
    Type of Medium: Electronic Resource
    Signatur Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...